This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
- Add `numBoostedRound` to jvm packages
- Remove rabit checkpoint version.
- Change the starting version of training continuation in JVM [breaking].
- Redefine the checkpoint version policy in jvm package. [breaking]
- Rename the Python check point callback parameter. [breaking]
- Unifies the checkpoint policy between Python and JVM.
* 1. Add parameters to set feature names and feature types
2. Save feature names and feature types to native json model
* Change serialization and deserialization format to ubj.
With the introduction of the barrier execution mode. we don't need to kill SparkContext when some xgboost tasks failed. Instead, Spark will handle the errors for us. So in this PR, `killSparkContextOnWorkerFailure` parameter is deleted.
This PR rewrites the approx tree method to use codebase from hist for better performance and code sharing.
The rewrite has many benefits:
- Support for both `max_leaves` and `max_depth`.
- Support for `grow_policy`.
- Support for mono constraint.
- Support for feature weights.
- Support for easier bin configuration (`max_bin`).
- Support for categorical data.
- Faster performance for most of the datasets. (many times faster)
- Support for prediction cache.
- Significantly better performance for external memory.
- Unites the code base between approx and hist.
* Now it's built as part of libxgboost.
* Set correct C API error in RABIT initialization and finalization.
* Remove redundant message.
* Guard the tracker print C API.
* cancel job instead of killing SparkContext
This PR changes the default behavior that kills SparkContext. Instead, This PR
cancels jobs when coming across task failed. That means the SparkContext is
still alive even some exceptions happen.
* add a parameter to control if killing SparkContext
* cancel the jobs the failed task belongs to
* remove the jobId from the map when one job failed.
* resolve comments
The functions featureValueOfSparseVector or featureValueOfDenseVector could return a Float.NaN if the input vectore was containing any missing values. This would make fail the partition key computation and most of the vectors would end up in the same partition. We fix this by avoid returning a NaN and simply use the row HashCode in this case.
We added a test to ensure that the repartition is indeed now uniform on input dataset containing values by checking that the partitions size variance is below a certain threshold.
Signed-off-by: Anthony D'Amato <anthony.damato@hotmail.fr>
* Allow non-zero for missing value when training.
* Fix wrong method names.
* Add a unit test
* Move the getter/setter unit test to MissingValueHandlingSuite
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* [jvm-packages] add gpu_hist tree method
* change updater hist to grow_quantile_histmaker
* add gpu scheduling
* pass correct parameters to xgboost library
* remove debug info
* add use.cuda for pom
* add CI for gpu_hist for jvm
* add gpu unit tests
* use gpu node to build jvm
* use nvidia-docker
* Add CLI interface to create_jni.py using argparse
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* fix type error
* Validate number of features.
* resolve comments
* add feature size for LabelPoint and DataBatch
* pass the feature size to native
* move feature size validating tests into a separate suite
* resolve comments
Co-authored-by: fis <jm.yuan@outlook.com>