- Use the array interface internally.
- Deprecate `XGDMatrixSetDenseInfo`.
- Deprecate `XGDMatrixSetUIntInfo`.
- Move the handling of `DataType` into the deprecated C function.
---------
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
- Use std::uint64_t instead of size_t to avoid implementation-defined type.
- Rename to bst_idx_t, to account for other types of indexing.
- Small cleanup to the base header.
* [coll] Pass context to various functions.
In the future, the `Context` object would be required for collective operations, this PR
passes the context object to some required functions to prepare for swapping out the
implementation.
- Update SparseDMatrix comment.
- Use a pointer in the bitfield. We will replace the `std::vector<bool>` in `ColumnMatrix` with bitfield.
- Clean up the page source. The timer is removed as it's inaccurate once we swap the mmap pointer into the page.
- Pass context from booster to DMatrix.
- Use context instead of integer for `n_threads`.
- Check the consistency configuration for `max_bin`.
- Test for all combinations of initialization options.
* Prepare for improving Windows networking compatibility.
* Include dmlc filesystem indirectly as dmlc/filesystem.h includes windows.h, which
conflicts with winsock2.h
* Define `NOMINMAX` conditionally.
* Link the winsock library when mysys32 is used.
* Add config file for read the doc.
Support adaptive tree, a feature supported by both sklearn and lightgbm. The tree leaf is recomputed based on residue of labels and predictions after construction.
For l1 error, the optimal value is the median (50 percentile).
This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
* Implement `MaxCategory` in quantile.
* Implement partition-based split for GPU evaluation. Currently, it's based on the existing evaluation function.
* Extract an evaluator from GPU Hist to store the needed states.
* Added some CUDA stream/event utilities.
* Update document with references.
* Fixed a bug in approx evaluator where the number of data points is less than the number of categories.