* Set output margin to True for custom objective in Python and R.
* Add a demo for writing multi-class custom objective function.
* Run tests on selected demos.
* Add inplace prediction for dask-cudf.
* Remove Dockerfile.release, since it's not used anywhere
* Use Conda exclusively in CUDF and GPU containers
* Improve cupy memory copying.
* Add skip marks to tests.
* Add mgpu-cudf category on the CI to run all distributed tests.
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
Normal prediction with DMatrix is now thread safe with locks. Added inplace prediction is lock free thread safe.
When data is on device (cupy, cudf), the returned data is also on device.
* Implementation for numpy, csr, cudf and cupy.
* Implementation for dask.
* Remove sync in simple dmatrix.
* Use pre-rounding based method to obtain reproducible floating point
summation.
* GPU Hist for regression and classification are bit-by-bit reproducible.
* Add doc.
* Switch to thrust reduce for `node_sum_gradient`.
* Remove f-string, since it's not supported by Python 3.5 (#5330)
* Remove f-string, since it's not supported by Python 3.5
* Add Python 3.5 to CI, to ensure compatibility
* Remove duplicated matplotlib
* Show deprecation notice for Python 3.5
* Fix lint
* Fix lint
* Fix a unit test that mistook MINOR ver for PATCH ver
* Enforce only major version in JSON model schema
* Bump version to 1.1.0-SNAPSHOT
The setup.py is rewritten. This new script uses only Python code and provide customized
implementation of setuptools commands. This way users can run most of setuptools commands
just like any other Python libraries.
* Remove setup_pip.py
* Remove soft links.
* Define customized commands.
* Remove shell script.
* Remove makefile script.
* Update the doc for building from source.
* Make pip install xgboost*.tar.gz work by fixing build-python.sh
* Simplify install doc
* Add test
* Install Miniconda for Linux target too
* Build XGBoost only once in sdist
* Try importing xgboost after installation
* Don't set PYTHONPATH env var for sdist test
* Simplify Scikit-Learn parameter management.
* Copy base class for removing duplicated parameter signatures.
* Set all parameters to None.
* Handle None in set_param.
* Extract the doc.
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
* Simplify DropTrees calling logic
* Add `training` parameter for prediction method.
* [Breaking]: Add `training` to C API.
* Change for R and Python custom objective.
* Correct comment.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
* Disable parameter validation for now.
Scikit-Learn passes all parameters down to XGBoost, whether they are used or
not.
* Add option `validate_parameters`.
* Remove `learning_rates`.
It's been deprecated since we have callback.
* Set `before_iteration` of `reset_learning_rate` to False to preserve
the initial learning rate, and comply to the term "reset".
Closes#4709.
* Tests for various `tree_method`.