- Use `bst_bin_t` in batch param constructor.
- Use `StringView` to avoid `std::string` when appropriate.
- Avoid using `MetaInfo` in quantile constructor to limit the scope of parameter.
* Split up column matrix initialization.
This PR splits the column matrix initialization into 2 steps, the first one initializes
the storage while the second one does the transpose. By doing so, we can reuse the code
for Quantile DMatrix.
- Remove unused parameters. There are still many warnings that are not yet
addressed. Currently, the warnings in dmlc-core dominate the error log.
- Remove `distributed` parameter from metric.
- Fixes some warnings about signed comparison.
- Optionally switch to c++17
- Use rmm CMake target.
- Workaround compiler errors.
- Fix GPUMetric inheritance.
- Run death tests even if it's built with RMM support.
Co-authored-by: jakirkham <jakirkham@gmail.com>
* Pass sparse page as adapter, which prepares for quantile dmatrix.
* Remove old external memory code like `rbegin` and extra `Init` function.
* Simplify type dispatch.
Support adaptive tree, a feature supported by both sklearn and lightgbm. The tree leaf is recomputed based on residue of labels and predictions after construction.
For l1 error, the optimal value is the median (50 percentile).
This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
* Use the name `Context`.
* Pass a context object into `SetInfo`.
* Add context to proxy matrix.
* Add context to iterative DMatrix.
This is to remove the use of the default number of threads during `SetInfo` as a follow-up on
removing the global omp variable while preparing for CUDA stream semantic. Currently, XGBoost
uses the legacy CUDA stream, we will gradually remove them in the future in favor of non-blocking streams.
* Generate column matrix from gHistIndex.
* Avoid synchronization with the sparse page once the cache is written.
* Cleanups: Remove member variables/functions, change the update routine to look like approx and gpu_hist.
* Remove pruner.
This PR prepares the GHistIndexMatrix to host the column matrix which is used by the hist tree method by accepting sparse_threshold parameter.
Some cleanups are made to ensure the correct batch param is being passed into DMatrix along with some additional tests for correctness of SimpleDMatrix.
This is the one last PR for removing omp global variable.
* Add context object to the `DMatrix`. This bridges `DMatrix` with https://github.com/dmlc/xgboost/issues/7308 .
* Require context to be available at the construction time of booster.
* Add `n_threads` support for R csc DMatrix constructor.
* Remove `omp_get_max_threads` in R glue code.
* Remove threading utilities that rely on omp global variable.
* Add num target model parameter, which is configured from input labels.
* Change elementwise metric and indexing for weights.
* Add demo.
* Add tests.
* Add a new ctor to tensor for `initilizer_list`.
* Change labels from host device vector to tensor.
* Rename the field from `labels_` to `labels` since it's a public member.
This PR changes base_margin into a 3-dim array, with one of them being reserved for multi-target classification. Also, a breaking change is made for binary serialization due to extra dimension along with a fix for saving the feature weights. Lastly, it unifies the prediction initialization between CPU and GPU. After this PR, the meta info setter in Python will be based on array interface.
* Extend array interface to handle ndarray.
The `ArrayInterface` class is extended to support multi-dim array inputs. Previously this
class handles only 2-dim (vector is also matrix). This PR specifies the expected
dimension at compile-time and the array interface can perform various checks automatically
for input data. Also, adapters like CSR are more rigorous about their input. Lastly, row
vector and column vector are handled without intervention from the caller.
This is already partially supported but never properly tested. So the only possible way to use it is calling `numpy.ndarray.flatten` with `base_margin` before passing it into XGBoost. This PR adds proper support
for most of the data types along with tests.