- Use the array interface internally.
- Deprecate `XGDMatrixSetDenseInfo`.
- Deprecate `XGDMatrixSetUIntInfo`.
- Move the handling of `DataType` into the deprecated C function.
---------
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
- Use std::uint64_t instead of size_t to avoid implementation-defined type.
- Rename to bst_idx_t, to account for other types of indexing.
- Small cleanup to the base header.
- CUDA implementation.
- Extract the broadcasting logic, we will need the context parameter after revamping the collective implementation.
- Some changes to the event loop for fixing a deadlock in CI.
- Move argsort into algorithms.cuh, add support for cuda stream.
* [coll] Pass context to various functions.
In the future, the `Context` object would be required for collective operations, this PR
passes the context object to some required functions to prepare for swapping out the
implementation.
- Use the `linalg::Matrix` for storing gradients.
- New API for the custom objective.
- Custom objective for multi-class/multi-target is now required to return the correct shape.
- Custom objective for Python can accept arrays with any strides. (row-major, column-major)
- Update SparseDMatrix comment.
- Use a pointer in the bitfield. We will replace the `std::vector<bool>` in `ColumnMatrix` with bitfield.
- Clean up the page source. The timer is removed as it's inaccurate once we swap the mmap pointer into the page.
- Pass context from booster to DMatrix.
- Use context instead of integer for `n_threads`.
- Check the consistency configuration for `max_bin`.
- Test for all combinations of initialization options.
Added some more tests for the learner and fit_stump, for both column-wise distributed learning and vertical federated learning.
Also moved the `IsRowSplit` and `IsColumnSplit` methods from the `DMatrix` to the `MetaInfo` since in some places we only have access to the `MetaInfo`. Added a new convenience method `IsVerticalFederatedLearning`.
Some refactoring of the testing fixtures.
- Fix prediction range.
- Support prediction cache in mt-hist.
- Support model slicing.
- Make the booster a Python iterable by defining `__iter__`.
- Cleanup removed/deprecated parameters.
- A new field in the output model `iteration_indptr` for pointing to the ranges of trees for each iteration.
* Make tree model param a private member.
* Number of features and targets are immutable after construction.
This is to reduce the number of places where we can run configuration.
- Pass obj info into tree updater as const pointer.
This way we don't have to initialize the learner model param before configuring gbm, hence
breaking up the dependency of configurations.
- Define a new tree struct embedded in the `RegTree`.
- Provide dispatching functions in `RegTree`.
- Fix some c++-17 warnings about the use of nodiscard (currently we disable the warning on
the CI).
- Use uint32_t instead of size_t for `bst_target_t` as it has a defined size and can be used
as part of dmlc parameter.
- Hide the `Segment` struct inside the categorical split matrix.