12 Commits

Author SHA1 Message Date
James Lamb
eb562d3829
[CI] address cmakelint warnings about whitespace (#9674) 2023-10-14 12:46:07 +08:00
James Lamb
db8d117f7e
[CI] standardize endif() calls in CMake scripts (#9637) 2023-10-08 11:45:20 +08:00
Philip Hyunsu Cho
6d8afb2218
[CI] Require C++17 + CMake 3.18; Use CUDA 11.8 in CI (#8853)
* Update to C++17

* Turn off unity build

* Update CMake to 3.18

* Use MSVC 2022 + CUDA 11.8

* Re-create stack for worker images

* Allocate more disk space for Windows

* Tempiorarily disable clang-tidy

* RAPIDS now requires Python 3.10+

* Unpin cuda-python

* Use latest NCCL

* Use Ubuntu 20.04 in RMM image

* Mark failing mgpu test as xfail
2023-03-01 09:22:24 -08:00
Jiaming Yuan
d48123d23b
Fix rmm build (#7973)
- Optionally switch to c++17
- Use rmm CMake target.
- Workaround compiler errors.
- Fix GPUMetric inheritance.
- Run death tests even if it's built with RMM support.

Co-authored-by: jakirkham <jakirkham@gmail.com>
2022-06-06 20:18:32 +08:00
Rong Ou
14ef38b834
Initial support for federated learning (#7831)
Federated learning plugin for xgboost:
* A gRPC server to aggregate MPI-style requests (allgather, allreduce, broadcast) from federated workers.
* A Rabit engine for the federated environment.
* Integration test to simulate federated learning.

Additional followups are needed to address GPU support, better security, and privacy, etc.
2022-05-05 21:49:22 +08:00
Jiaming Yuan
f937f514aa
Remove lz4 compression with external memory. (#7076) 2021-07-06 14:46:43 +08:00
Jiaming Yuan
e033caa3ba
Remove linking RMM library. (#6146)
* Remove linking RMM library.

* RMM is now header only.

* Remove remaining reference.
2020-09-22 16:59:33 -07:00
Philip Hyunsu Cho
d0ccb13d09
Work around a compiler bug in MacOS AppleClang 11 (#6103)
* Workaround a compiler bug in MacOS AppleClang

* [CI] Run C++ test with MacOS Catalina + AppleClang 11.0.3

* [CI] Migrate cmake_test on MacOS from Travis CI to GitHub Actions

* Install OpenMP runtime

* [CI] Use CMake to locate lz4 lib
2020-09-09 21:21:55 -07:00
Philip Hyunsu Cho
9adb812a0a
RMM integration plugin (#5873)
* [CI] Add RMM as an optional dependency

* Replace caching allocator with pool allocator from RMM

* Revert "Replace caching allocator with pool allocator from RMM"

This reverts commit e15845d4e72e890c2babe31a988b26503a7d9038.

* Use rmm::mr::get_default_resource()

* Try setting default resource (doesn't work yet)

* Allocate pool_mr in the heap

* Prevent leaking pool_mr handle

* Separate EXPECT_DEATH() in separate test suite suffixed DeathTest

* Turn off death tests for RMM

* Address reviewer's feedback

* Prevent leaking of cuda_mr

* Fix Jenkinsfile syntax

* Remove unnecessary function in Jenkinsfile

* [CI] Install NCCL into RMM container

* Run Python tests

* Try building with RMM, CUDA 10.0

* Do not use RMM for CUDA 10.0 target

* Actually test for test_rmm flag

* Fix TestPythonGPU

* Use CNMeM allocator, since pool allocator doesn't yet support multiGPU

* Use 10.0 container to build RMM-enabled XGBoost

* Revert "Use 10.0 container to build RMM-enabled XGBoost"

This reverts commit 789021fa31112e25b683aef39fff375403060141.

* Fix Jenkinsfile

* [CI] Assign larger /dev/shm to NCCL

* Use 10.2 artifact to run multi-GPU Python tests

* Add CUDA 10.0 -> 11.0 cross-version test; remove CUDA 10.0 target

* Rename Conda env rmm_test -> gpu_test

* Use env var to opt into CNMeM pool for C++ tests

* Use identical CUDA version for RMM builds and tests

* Use Pytest fixtures to enable RMM pool in Python tests

* Move RMM to plugin/CMakeLists.txt; use PLUGIN_RMM

* Use per-device MR; use command arg in gtest

* Set CMake prefix path to use Conda env

* Use 0.15 nightly version of RMM

* Remove unnecessary header

* Fix a unit test when cudf is missing

* Add RMM demos

* Remove print()

* Use HostDeviceVector in GPU predictor

* Simplify pytest setup; use LocalCUDACluster fixture

* Address reviewers' commments

Co-authored-by: Hyunsu Cho <chohyu01@cs.wasshington.edu>
2020-08-12 01:26:02 -07:00
Vladislav Epifanov
388f975cf5
Introducing DPC++-based plugin (predictor, objective function) supporting oneAPI programming model (#5825)
* Added plugin with DPC++-based predictor and objective function

* Update CMakeLists.txt

* Update regression_obj_oneapi.cc

* Added README.md for OneAPI plugin

* Added OneAPI predictor support to gbtree

* Update README.md

* Merged kernels in gradient computation. Enabled multiple loss functions with DPC++ backend

* Aligned plugin CMake files with latest master changes. Fixed whitespace typos

* Removed debug output

* [CI] Make oneapi_plugin a CMake target

* Added tests for OneAPI plugin for predictor and obj. functions

* Temporarily switched to default selector for device dispacthing in OneAPI plugin to enable execution in environments without gpus

* Updated readme file.

* Fixed USM usage in predictor

* Removed workaround with explicit templated names for DPC++ kernels

* Fixed warnings in plugin tests

* Fix CMake build of gtest

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-08-08 18:40:40 -07:00
Philip Hyunsu Cho
0d411b0397
[CI] Simplify CMake build with modern CMake techniques (#5871)
* [CI] Simplify CMake build

* Make sure that plugins can be built

* [CI] Install lz4 on Mac
2020-07-08 04:23:24 -07:00
Jiaming Yuan
ab357dd41c
Remove plugin, cuda related code in automake & autoconf files (#4789)
* Build plugin example with CMake.

* Remove plugin, cuda related code in automake & autoconf files.

* Fix typo in GPU doc.
2019-08-18 16:54:34 -04:00