97 Commits

Author SHA1 Message Date
Jiaming Yuan
36a7396658
Replace dmlc any with std any. (#8892) 2023-03-11 06:11:04 +08:00
Jiaming Yuan
5feee8d4a9
Define core multi-target regression tree structure. (#8884)
- Define a new tree struct embedded in the `RegTree`.
- Provide dispatching functions in `RegTree`.
- Fix some c++-17 warnings about the use of nodiscard (currently we disable the warning on
  the CI).
- Use uint32_t instead of size_t for `bst_target_t` as it has a defined size and can be used
  as part of dmlc parameter.
- Hide the `Segment` struct inside the categorical split matrix.
2023-03-09 19:03:06 +08:00
Jiaming Yuan
3e26107a9c
Rename and extract Context. (#8528)
* Rename `GenericParameter` to `Context`.
* Rename header file to reflect the change.
* Rename all references.
2022-12-07 04:58:54 +08:00
Jiaming Yuan
fffb1fca52
Calculate base_score based on input labels for mae. (#8107)
Fit an intercept as base score for abs loss.
2022-09-20 20:53:54 +08:00
Jiaming Yuan
2c70751d1e
Implement iterative DMatrix for CPU. (#8116) 2022-07-26 22:34:21 +08:00
Jiaming Yuan
765097d514
Simplify inplace-predict. (#7910)
Pass the `X` as part of Proxy DMatrix instead of an independent `dmlc::any`.
2022-05-18 17:52:00 +08:00
Jiaming Yuan
2775c2a1ab
Prepare external memory support for hist. (#7638)
This PR prepares the GHistIndexMatrix to host the column matrix which is used by the hist tree method by accepting sparse_threshold parameter.

Some cleanups are made to ensure the correct batch param is being passed into DMatrix along with some additional tests for correctness of SimpleDMatrix.
2022-02-10 16:58:02 +08:00
Jiaming Yuan
68cdbc9c16
Remove omp_get_max_threads in CPU predictor. (#7519)
This is part of the on going effort to remove the dependency on global omp variables.
2022-01-04 22:12:15 +08:00
Jiaming Yuan
d33854af1b
[Breaking] Accept multi-dim meta info. (#7405)
This PR changes base_margin into a 3-dim array, with one of them being reserved for multi-target classification. Also, a breaking change is made for binary serialization due to extra dimension along with a fix for saving the feature weights. Lastly, it unifies the prediction initialization between CPU and GPU. After this PR, the meta info setter in Python will be based on array interface.
2021-11-18 23:02:54 +08:00
Jiaming Yuan
a13321148a
Support multi-class with base margin. (#7381)
This is already partially supported but never properly tested. So the only possible way to use it is calling `numpy.ndarray.flatten` with `base_margin` before passing it into XGBoost. This PR adds proper support
for most of the data types along with tests.
2021-11-02 13:38:00 +08:00
Robert Maynard
1a75f43304
Allow compilation with nvcc 11.4 (#7131)
* Use type aliases for discard iterators

* update to include host_vector as thrust 1.12 doesn't bring it in as a side-effect

* cub::DispatchRadixSort requires signed offset types
2021-07-27 20:05:33 +08:00
Jiaming Yuan
1c8fdf2218
Remove use of device_idx in dh::LaunchN. (#7063)
It's an unused parameter, removing it can make the CI log more readable.
2021-06-29 11:37:26 +08:00
Jiaming Yuan
8fa32fdda2
Implement categorical data support for SHAP. (#7053)
* Add CPU implementation.
* Update GPUTreeSHAP.
* Add GPU implementation by defining custom split condition.
2021-06-25 19:02:46 +08:00
Jiaming Yuan
bbfffb444d
Fix race condition in CPU shap. (#7050) 2021-06-21 10:03:15 +08:00
Jiaming Yuan
86715e4cd4
Support categorical data for dask functional interface and DQM. (#7043)
* Support categorical data for dask functional interface and DQM.

* Implement categorical data support for GPU GK-merge.
* Add support for dask functional interface.
* Add support for DQM.

* Get newer cupy.
2021-06-18 13:06:52 +08:00
Jiaming Yuan
f79cc4a7a4
Implement categorical prediction for CPU and GPU predict leaf. (#7001)
* Categorical prediction with CPU predictor and GPU predict leaf.

* Implement categorical prediction for CPU prediction.
* Implement categorical prediction for GPU predict leaf.
* Refactor the prediction functions to have a unified get next node function.

Co-authored-by: Shvets Kirill <kirill.shvets@intel.com>
2021-06-11 10:11:45 +08:00
Jiaming Yuan
a59c7323b4
Fix inplace predict missing value. (#6787) 2021-03-27 05:36:10 +08:00
Jiaming Yuan
e8c5c53e2f
Use Predictor for dart. (#6693)
* Use normal predictor for dart booster.
* Implement `inplace_predict` for dart.
* Enable `dart` for dask interface now that it's thread-safe.
* categorical data should be working out of box for dart now.

The implementation is not very efficient as it has to pull back the data and
apply weight for each tree, but still a significant improvement over previous
implementation as now we no longer binary search for each sample.

* Fix output prediction shape on dataframe.
2021-02-09 23:30:19 +08:00
Jiaming Yuan
4656b09d5d
[breaking] Add prediction fucntion for DMatrix and use inplace predict for dask. (#6668)
* Add a new API function for predicting on `DMatrix`.  This function aligns
with rest of the `XGBoosterPredictFrom*` functions on semantic of function
arguments.
* Purge `ntree_limit` from libxgboost, use iteration instead.
* [dask] Use `inplace_predict` by default for dask sklearn models.
* [dask] Run prediction shape inference on worker instead of client.

The breaking change is in the Python sklearn `apply` function, I made it to be
consistent with other prediction functions where `best_iteration` is used by
default.
2021-02-08 18:26:32 +08:00
Jiaming Yuan
411592a347
Enhance inplace prediction. (#6653)
* Accept array interface for csr and array.
* Accept an optional proxy dmatrix for metainfo.

This constructs an explicit `_ProxyDMatrix` type in Python.

* Remove unused doc.
* Add strict output.
2021-02-02 11:41:46 +08:00
Jiaming Yuan
c3c8e66fc9
Make prediction functions thread safe. (#6648) 2021-01-28 23:29:43 +08:00
Philip Hyunsu Cho
c31e3efa7c
Pass correct split_type to GPU predictor (#6491)
* Pass correct split_type to GPU predictor

* Add a test
2020-12-11 19:30:00 -08:00
Honza Sterba
b0036b339b
Optionaly fail when gpu_id is set to invalid value (#6342) 2020-11-28 15:14:12 +08:00
Jiaming Yuan
8a17610666
Implement GPU predict leaf. (#6187) 2020-11-11 17:33:47 +08:00
Rory Mitchell
f0c3ff313f
Update GPUTreeShap, add docs (#6281)
* Update GPUTreeShap, add docs

* Fix test

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2020-10-27 18:22:12 +13:00
Igor Moura
d1254808d5
Clean up C++ warnings (#6213) 2020-10-19 23:02:33 +08:00
Jiaming Yuan
798af22ff4
Add categorical data support to GPU predictor. (#6165) 2020-09-29 11:25:34 +08:00
Jiaming Yuan
52c0b3f100
Fix error message. (#6176) 2020-09-29 11:18:25 +08:00
Rory Mitchell
dda9e1e487
Update GPUTreeshap (#6163)
* Reduce shap test duration

* Test interoperability with shap package

* Add feature interactions

* Update GPUTreeShap
2020-09-28 09:43:47 +13:00
Jiaming Yuan
c6f2b8c841
Upgrade gputreeshap. (#6099)
* Upgrade gputreeshap.

Co-authored-by: Rory Mitchell <r.a.mitchell.nz@gmail.com>
2020-09-15 12:57:22 +12:00
Rory Mitchell
2e907abdb8
Updates to GPUTreeShap (#6087)
* Extract paths on device

* Update GPUTreeShap
2020-09-06 13:39:08 +12:00
Jiaming Yuan
80c8547147
Make binary bin search reusable. (#6058)
* Move binary search row to hist util.
* Remove dead code.
2020-08-26 05:05:11 +08:00
Rory Mitchell
9a4e8b1d81
GPUTreeShap (#6038) 2020-08-25 12:47:41 +12:00
Philip Hyunsu Cho
9adb812a0a
RMM integration plugin (#5873)
* [CI] Add RMM as an optional dependency

* Replace caching allocator with pool allocator from RMM

* Revert "Replace caching allocator with pool allocator from RMM"

This reverts commit e15845d4e72e890c2babe31a988b26503a7d9038.

* Use rmm::mr::get_default_resource()

* Try setting default resource (doesn't work yet)

* Allocate pool_mr in the heap

* Prevent leaking pool_mr handle

* Separate EXPECT_DEATH() in separate test suite suffixed DeathTest

* Turn off death tests for RMM

* Address reviewer's feedback

* Prevent leaking of cuda_mr

* Fix Jenkinsfile syntax

* Remove unnecessary function in Jenkinsfile

* [CI] Install NCCL into RMM container

* Run Python tests

* Try building with RMM, CUDA 10.0

* Do not use RMM for CUDA 10.0 target

* Actually test for test_rmm flag

* Fix TestPythonGPU

* Use CNMeM allocator, since pool allocator doesn't yet support multiGPU

* Use 10.0 container to build RMM-enabled XGBoost

* Revert "Use 10.0 container to build RMM-enabled XGBoost"

This reverts commit 789021fa31112e25b683aef39fff375403060141.

* Fix Jenkinsfile

* [CI] Assign larger /dev/shm to NCCL

* Use 10.2 artifact to run multi-GPU Python tests

* Add CUDA 10.0 -> 11.0 cross-version test; remove CUDA 10.0 target

* Rename Conda env rmm_test -> gpu_test

* Use env var to opt into CNMeM pool for C++ tests

* Use identical CUDA version for RMM builds and tests

* Use Pytest fixtures to enable RMM pool in Python tests

* Move RMM to plugin/CMakeLists.txt; use PLUGIN_RMM

* Use per-device MR; use command arg in gtest

* Set CMake prefix path to use Conda env

* Use 0.15 nightly version of RMM

* Remove unnecessary header

* Fix a unit test when cudf is missing

* Add RMM demos

* Remove print()

* Use HostDeviceVector in GPU predictor

* Simplify pytest setup; use LocalCUDACluster fixture

* Address reviewers' commments

Co-authored-by: Hyunsu Cho <chohyu01@cs.wasshington.edu>
2020-08-12 01:26:02 -07:00
Philip Hyunsu Cho
1d22a9be1c
Revert "Reorder includes. (#5749)" (#5771)
This reverts commit d3a0efbf162f3dceaaf684109e1178c150b32de3.
2020-06-09 10:29:28 -07:00
Jiaming Yuan
cacff9232a
Remove column major specialization. (#5755)
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-06-05 16:19:14 +08:00
Jiaming Yuan
d3a0efbf16
Reorder includes. (#5749)
* Reorder includes.

* R.
2020-06-03 17:30:47 +12:00
Jiaming Yuan
6671b42dd4
Use ellpack for prediction only when sparsepage doesn't exist. (#5504) 2020-04-10 12:15:46 +08:00
Jiaming Yuan
0012f2ef93
Upgrade clang-tidy on CI. (#5469)
* Correct all clang-tidy errors.
* Upgrade clang-tidy to 10 on CI.

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-04-05 04:42:29 +08:00
Jiaming Yuan
6601a641d7
Thread safe, inplace prediction. (#5389)
Normal prediction with DMatrix is now thread safe with locks.  Added inplace prediction is lock free thread safe.

When data is on device (cupy, cudf), the returned data is also on device.

* Implementation for numpy, csr, cudf and cupy.

* Implementation for dask.

* Remove sync in simple dmatrix.
2020-03-30 15:35:28 +08:00
Rory Mitchell
3ad4333b0e
Partial rewrite EllpackPage (#5352) 2020-03-11 10:15:53 +13:00
Jiaming Yuan
655cf17b60
Predict on Ellpack. (#5327)
* Unify GPU prediction node.
* Add `PageExists`.
* Dispatch prediction on input data for GPU Predictor.
2020-02-23 06:27:03 +08:00
Jiaming Yuan
0110754a76
Remove update prediction cache from predictors. (#5312)
Move this function into gbtree, and uses only updater for doing so. As now the predictor knows exactly how many trees to predict, there's no need for it to update the prediction cache.
2020-02-17 11:35:47 +08:00
Jiaming Yuan
c35cdecddd
Move prediction cache to Learner. (#5220)
* Move prediction cache into Learner.

* Clean-ups

- Remove duplicated cache in Learner and GBM.
- Remove ad-hoc fix of invalid cache.
- Remove `PredictFromCache` in predictors.
- Remove prediction cache for linear altogether, as it's only moving the
  prediction into training process but doesn't provide any actual overall speed
  gain.
- The cache is now unique to Learner, which means the ownership is no longer
  shared by any other components.

* Changes

- Add version to prediction cache.
- Use weak ptr to check expired DMatrix.
- Pass shared pointer instead of raw pointer.
2020-02-14 13:04:23 +08:00
Jiaming Yuan
ee287808fb
Lazy initialization of device vector. (#5173)
* Lazy initialization of device vector.

* Fix #5162.

* Disable copy constructor of HostDeviceVector.  Prevents implicit copying.

* Fix CPU build.

* Bring back move assignment operator.
2020-01-07 11:23:05 +08:00
Jiaming Yuan
e089e16e3d
Pass pointer to model parameters. (#5101)
* Pass pointer to model parameters.

This PR de-duplicates most of the model parameters except the one in
`tree_model.h`.  One difficulty is `base_score` is a model property but can be
changed at runtime by objective function.  Hence when performing model IO, we
need to save the one provided by users, instead of the one transformed by
objective.  Here we created an immutable version of `LearnerModelParam` that
represents the value of model parameter after configuration.
2019-12-10 12:11:22 +08:00
Jiaming Yuan
608ebbe444
Fix GPU ID and prediction cache from pickle (#5086)
* Hack for saving GPU ID.

* Declare prediction cache on GBTree.

* Add a simple test.

* Add `auto` option for GPU Predictor.
2019-12-07 16:02:06 +08:00
Jiaming Yuan
64af1ecf86
[Breaking] Remove num roots. (#5059) 2019-12-05 21:58:43 +08:00
Kodi Arfer
f2277e7106 Use DART tree weights when computing SHAPs (#5050)
This PR fixes tree weights in dart being ignored when computing contributions.

* Fix ellpack page source link.
* Add tree weights to compute contribution.
2019-12-03 19:55:53 +08:00
Jiaming Yuan
97abcc7ee2
Extract interaction constraint from split evaluator. (#5034)
*  Extract interaction constraints from split evaluator.

The reason for doing so is mostly for model IO, where num_feature and interaction_constraints are copied in split evaluator. Also interaction constraint by itself is a feature selector, acting like column sampler and it's inefficient to bury it deep in the evaluator chain. Lastly removing one another copied parameter is a win.

*  Enable inc for approx tree method.

As now the implementation is spited up from evaluator class, it's also enabled for approx method.

*  Removing obsoleted code in colmaker.

They are never documented nor actually used in real world. Also there isn't a single test for those code blocks.

*  Unifying the types used for row and column.

As the size of input dataset is marching to billion, incorrect use of int is subject to overflow, also singed integer overflow is undefined behaviour. This PR starts the procedure for unifying used index type to unsigned integers. There's optimization that can utilize this undefined behaviour, but after some testings I don't see the optimization is beneficial to XGBoost.
2019-11-14 20:11:41 +08:00