This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
* Handle the new `device` parameter in dask and demos.
- Check no ordinal is specified in the dask interface.
- Update demos.
- Update dask doc.
- Update the condition for QDM.
- A `DeviceOrd` struct is implemented to indicate the device. It will eventually replace the `gpu_id` parameter.
- The `predictor` parameter is removed.
- Fallback to `DMatrix` when `inplace_predict` is not available.
- The heuristic for choosing a predictor is only used during training.
- Remove parameter serialization in the scikit-learn interface.
The scikit-lear interface `save_model` will save only the model and discard all
hyper-parameters. This is to align with the native XGBoost interface, which distinguishes
the hyper-parameter and model parameters.
With the scikit-learn interface, model parameters are attributes of the estimator. For
instance, `n_features_in_`, `n_classes_` are always accessible with
`estimator.n_features_in_` and `estimator.n_classes_`, but not with the
`estimator.get_params`.
- Define a `load_model` method for classifier to load its own attributes.
- Set n_estimators to None by default.
- The new implementation is more strict as only binary labels are accepted. The previous implementation converts values greater than 1 to 1.
- Deterministic GPU. (no atomic add).
- Fix top-k handling.
- Precise definition of MAP. (There are other variants on how to handle top-k).
- Refactor GPU ranking tests.
* Support sklearn cross validation for ranker.
- Add a convention for X to include a special `qid` column.
sklearn utilities consider only `X`, `y` and `sample_weight` for supervised learning
algorithms, but we need an additional qid array for ranking.
It's important to be able to support the cross validation function in sklearn since all
other tuning functions like grid search are based on cross validation.
* Replace all uses of deprecated function sklearn.datasets.load_boston
* More renaming
* Fix bad name
* Update assertion
* Fix n boosted rounds.
* Avoid over regularization.
* Rebase.
* Avoid over regularization.
* Whac-a-mole
Co-authored-by: fis <jm.yuan@outlook.com>
This PR rewrites the approx tree method to use codebase from hist for better performance and code sharing.
The rewrite has many benefits:
- Support for both `max_leaves` and `max_depth`.
- Support for `grow_policy`.
- Support for mono constraint.
- Support for feature weights.
- Support for easier bin configuration (`max_bin`).
- Support for categorical data.
- Faster performance for most of the datasets. (many times faster)
- Support for prediction cache.
- Significantly better performance for external memory.
- Unites the code base between approx and hist.
* Add num target model parameter, which is configured from input labels.
* Change elementwise metric and indexing for weights.
* Add demo.
* Add tests.