12 Commits

Author SHA1 Message Date
Jiaming Yuan
317d7be6ee
Always use partition based categorical splits. (#7857) 2022-05-03 22:30:32 +08:00
Jiaming Yuan
fdf533f2b9
[POC] Experimental support for l1 error. (#7812)
Support adaptive tree, a feature supported by both sklearn and lightgbm.  The tree leaf is recomputed based on residue of labels and predictions after construction.

For l1 error, the optimal value is the median (50 percentile).

This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
2022-04-26 21:41:55 +08:00
Jiaming Yuan
996cc705af
Small cleanup to hist tree method. (#7735)
* Remove special optimization using number of bins.
* Remove 1-based index for column sampling.
* Remove data layout.
* Unify update prediction cache.
2022-03-20 03:44:55 +08:00
Jiaming Yuan
83a66b4994
Support categorical data for hist. (#7695)
* Extract partitioner from hist.
* Implement categorical data support by passing the gradient index directly into the partitioner.
* Organize/update document.
* Remove code for negative hessian.
2022-02-25 03:47:14 +08:00
Jiaming Yuan
711f7f3851
Avoid std::terminate for R package. (#7661)
This is part of CRAN policies.
2022-02-17 01:27:20 +08:00
Jiaming Yuan
0d0abe1845
Support optimal partitioning for GPU hist. (#7652)
* Implement `MaxCategory` in quantile.
* Implement partition-based split for GPU evaluation.  Currently, it's based on the existing evaluation function.
* Extract an evaluator from GPU Hist to store the needed states.
* Added some CUDA stream/event utilities.
* Update document with references.
* Fixed a bug in approx evaluator where the number of data points is less than the number of categories.
2022-02-15 03:03:12 +08:00
Jiaming Yuan
e060519d4f
Avoid regenerating the gradient index for approx. (#7591) 2022-01-26 21:41:30 +08:00
Jiaming Yuan
deab0e32ba
Validate out of range categorical value. (#7576)
* Use float in CPU categorical set to preserve the input value.
* Check out of range values.
2022-01-18 20:16:19 +08:00
Jiaming Yuan
d4274bc556
Fix typo. (#7433) 2021-11-15 01:28:11 +08:00
Jiaming Yuan
d7d1b6e3a6
CPU evaluation for cat data. (#7393)
* Implementation for one hot based.
* Implementation for partition based. (LightGBM)
2021-11-06 14:41:35 +08:00
Jiaming Yuan
8d7c6366d7
Accept histogram cut instead gradient index in evaluation. (#7336) 2021-10-20 18:04:46 +08:00
Jiaming Yuan
615ab2b03e
Extract evaluate splits from CPU hist. (#7079)
Other than modularizing the split evaluation function, this PR also removes some more functions including `InitNewNodes` and `BuildNodeStats` among some other unused variables.  Also, scattered code like setting leaf weights is grouped into the split evaluator and `NodeEntry` is simplified and made private.  Another subtle difference with the original implementation is that the modified code doesn't call `tree[nidx].Parent()` to traversal upward.
2021-07-07 15:16:25 +08:00