* [jvm-packages] move the dmatrix building into rabit context (#7823)
This fixes the QuantileDeviceDMatrix in distributed environment.
* [doc] update the jvm tutorial to 1.6.1 [skip ci] (#7834)
* [Breaking][jvm-packages] Use barrier execution mode (#7836)
With the introduction of the barrier execution mode. we don't need to kill SparkContext when some xgboost tasks failed. Instead, Spark will handle the errors for us. So in this PR, `killSparkContextOnWorkerFailure` parameter is deleted.
* [doc] remove the doc about killing SparkContext [skip ci] (#7840)
* [jvm-package] remove the coalesce in barrier mode (#7846)
* [jvm-packages] Fix model compatibility (#7845)
* Ignore all Java exceptions when looking for Linux musl support (#7844)
Co-authored-by: Bobby Wang <wbo4958@gmail.com>
Co-authored-by: Michael Allman <msa@allman.ms>
* [jvm-packages] add hostIp and python exec for rabit tracker (#7808)
* Fix training continuation with categorical model. (#7810)
* Make sure the task is initialized before construction of tree updater.
This is a quick fix meant to be backported to 1.6, for a full fix we should pass the model
param into tree updater by reference instead.
Co-authored-by: Bobby Wang <wbo4958@gmail.com>
Following classes are added to support dataframe in java binding:
- `Column` is an abstract type for a single column in tabular data.
- `ColumnBatch` is an abstract type for dataframe.
- `CuDFColumn` is an implementaiton of `Column` that consume cuDF column
- `CudfColumnBatch` is an implementation of `ColumnBatch` that consumes cuDF dataframe.
- `DeviceQuantileDMatrix` is the interface for quantized data.
The Java implementation mimics the Python interface and uses `__cuda_array_interface__` protocol for memory indexing. One difference is on JVM package, the data batch is staged on the host as java iterators cannot be reset.
Co-authored-by: jiamingy <jm.yuan@outlook.com>
Fix bug introduced in 17913713b554d820a8ce94226d854b4a5f1d8bbc (allow loading from byte array)
When loading model from stream, only last buffer read from the input stream is used to construct the model.
This may work for models smaller than 1 MiB (if you are lucky enough to read the whole model at once), but will always fail if the model is larger.
* Add feature score support for linear model.
* Port R interface to the new implementation.
* Add linear model support in Python.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Add `XGBOOST_RABIT_TRACKER_IP_FOR_TEST` to set rabit tracker IP
* change spark and rabit tracker IP to 127.0.0.1on GitHub Action.
Co-authored-by: fis <jm.yuan@outlook.com>
* Add ability to load booster direct from byte array
* fix compiler error
* move InputStream to byte-buffer conversion
- move it from Booster to XGBoost facade class
* [java] extending the library loader to use both OS and CPU architecture.
* Simplifying create_jni.py's architecture detection.
* Tidying up the architecture detection in create_jni.py
* Now it's built as part of libxgboost.
* Set correct C API error in RABIT initialization and finalization.
* Remove redundant message.
* Guard the tracker print C API.
* [CI] Clean up build for JVM packages
* Use correct path for saving native lib
* Fix groupId of maven-surefire-plugin
* Fix stashing of xgboost4j_jar_gpu
* [CI] Don't run xgboost4j-tester with GPU, since it doesn't use gpu_hist
* Add getNumFeature to the Java API
* Add getNumFeature to the Scala API
* Add unit tests for getNumFeature
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* [jvm-packages] add gpu_hist tree method
* change updater hist to grow_quantile_histmaker
* add gpu scheduling
* pass correct parameters to xgboost library
* remove debug info
* add use.cuda for pom
* add CI for gpu_hist for jvm
* add gpu unit tests
* use gpu node to build jvm
* use nvidia-docker
* Add CLI interface to create_jni.py using argparse
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* fix type error
* Validate number of features.
* resolve comments
* add feature size for LabelPoint and DataBatch
* pass the feature size to native
* move feature size validating tests into a separate suite
* resolve comments
Co-authored-by: fis <jm.yuan@outlook.com>
* Remove f-string, since it's not supported by Python 3.5 (#5330)
* Remove f-string, since it's not supported by Python 3.5
* Add Python 3.5 to CI, to ensure compatibility
* Remove duplicated matplotlib
* Show deprecation notice for Python 3.5
* Fix lint
* Fix lint
* Fix a unit test that mistook MINOR ver for PATCH ver
* Enforce only major version in JSON model schema
* Bump version to 1.1.0-SNAPSHOT
* Added a check call macro in jvm package, prevents executing other functions
from jvm when error occurred in XGBoost. For example, when prediction fails jvm
should not try to allocate memory based on the output prediction size.
* Simplify DropTrees calling logic
* Add `training` parameter for prediction method.
* [Breaking]: Add `training` to C API.
* Change for R and Python custom objective.
* Correct comment.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
* Fix syncing DMatrix columns.
* notes for tree method.
* Enable feature validation for all interfaces except for jvm.
* Better tests for boosting from predictions.
* Disable validation on JVM.