With the introduction of the barrier execution mode. we don't need to kill SparkContext when some xgboost tasks failed. Instead, Spark will handle the errors for us. So in this PR, `killSparkContextOnWorkerFailure` parameter is deleted.
xgboost4j-spark provides 2 sets of API for setting features, one for CPU, another for GPU, which may cause confusion.
This PR removes the GPU API and adds an override CPU function setFeaturesCol to accept Array[String] parameters.
This PR rewrites the approx tree method to use codebase from hist for better performance and code sharing.
The rewrite has many benefits:
- Support for both `max_leaves` and `max_depth`.
- Support for `grow_policy`.
- Support for mono constraint.
- Support for feature weights.
- Support for easier bin configuration (`max_bin`).
- Support for categorical data.
- Faster performance for most of the datasets. (many times faster)
- Support for prediction cache.
- Significantly better performance for external memory.
- Unites the code base between approx and hist.
Spark 3.2 depends on 3.7.0-M11 which has changed some implicited functions'
signatures. And it will result the xgboost4j built against spark 3.0/3.1
failed when saving the model.
* Now it's built as part of libxgboost.
* Set correct C API error in RABIT initialization and finalization.
* Remove redundant message.
* Guard the tracker print C API.
* Change DefaultEvalMetric of classification from error to logloss
* Change default binary metric in plugin/example/custom_obj.cc
* Set old error metric in python tests
* Set old error metric in R tests
* Fix missed eval metrics and typos in R tests
* Fix setting eval_metric twice in R tests
* Add warning for empty eval_metric for classification
* Fix Dask tests
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* cancel job instead of killing SparkContext
This PR changes the default behavior that kills SparkContext. Instead, This PR
cancels jobs when coming across task failed. That means the SparkContext is
still alive even some exceptions happen.
* add a parameter to control if killing SparkContext
* cancel the jobs the failed task belongs to
* remove the jobId from the map when one job failed.
* resolve comments
We propose to only use the rowHashCode to compute the partitionKey, adding the FeatureValue hashCode does not bring more value and would make the computation slower. Even though a collision would appear at 0.2% with MurmurHash3 this is bearable for partitioning, this won't have any impact on the data balancing.
The functions featureValueOfSparseVector or featureValueOfDenseVector could return a Float.NaN if the input vectore was containing any missing values. This would make fail the partition key computation and most of the vectors would end up in the same partition. We fix this by avoid returning a NaN and simply use the row HashCode in this case.
We added a test to ensure that the repartition is indeed now uniform on input dataset containing values by checking that the partitions size variance is below a certain threshold.
Signed-off-by: Anthony D'Amato <anthony.damato@hotmail.fr>
* Allow non-zero for missing value when training.
* Fix wrong method names.
* Add a unit test
* Move the getter/setter unit test to MissingValueHandlingSuite
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* [jvm-packages] add gpu_hist tree method
* change updater hist to grow_quantile_histmaker
* add gpu scheduling
* pass correct parameters to xgboost library
* remove debug info
* add use.cuda for pom
* add CI for gpu_hist for jvm
* add gpu unit tests
* use gpu node to build jvm
* use nvidia-docker
* Add CLI interface to create_jni.py using argparse
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>