- A `DeviceOrd` struct is implemented to indicate the device. It will eventually replace the `gpu_id` parameter.
- The `predictor` parameter is removed.
- Fallback to `DMatrix` when `inplace_predict` is not available.
- The heuristic for choosing a predictor is only used during training.
* Add num target model parameter, which is configured from input labels.
* Change elementwise metric and indexing for weights.
* Add demo.
* Add tests.
This is already partially supported but never properly tested. So the only possible way to use it is calling `numpy.ndarray.flatten` with `base_margin` before passing it into XGBoost. This PR adds proper support
for most of the data types along with tests.
* Support more input types for categorical data.
* Shorten the type name from "categorical" to "c".
* Tests for np/cp array and scipy csr/csc/coo.
* Specify the type for feature info.
* Add a new API function for predicting on `DMatrix`. This function aligns
with rest of the `XGBoosterPredictFrom*` functions on semantic of function
arguments.
* Purge `ntree_limit` from libxgboost, use iteration instead.
* [dask] Use `inplace_predict` by default for dask sklearn models.
* [dask] Run prediction shape inference on worker instead of client.
The breaking change is in the Python sklearn `apply` function, I made it to be
consistent with other prediction functions where `best_iteration` is used by
default.
* Initial support for distributed LTR using dask.
* Support `qid` in libxgboost.
* Refactor `predict` and `n_features_in_`, `best_[score/iteration/ntree_limit]`
to avoid duplicated code.
* Define `DaskXGBRanker`.
The dask ranker doesn't support group structure, instead it uses query id and
convert to group ptr internally.
* Deprecate LabelEncoder in XGBClassifier; skip LabelEncoder for cuDF/cuPy inputs
* Add unit tests for cuDF and cuPy inputs with XGBClassifier
* Fix lint
* Clarify warning
* Move use_label_encoder option to XGBClassifier constructor
* Add a test for cudf.Series
* Add use_label_encoder to XGBRFClassifier doc
* Address reviewer feedback