* Make external memory data partitioning deterministic.
* Change the meaning of `page_size` from bytes to number of rows.
* Design a data pool.
* Note for external memory.
* Enable unity build on Windows CI.
* Force garbage collect on test.
This PR is meant the end the confusion around best_ntree_limit and unify model slicing. We have multi-class and random forests, asking users to understand how to set ntree_limit is difficult and error prone.
* Implement the save_best option in early stopping.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Removed some warnings
* Rebase with master
* Solved C++ Google Tests errors made by refactoring in order to remove warnings
* Undo renaming path -> path_
* Fix style check
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* Fix warnings for json.h
* Fix warnings for metric.h
* Fix warnings for updater_quantile_hist.cc.
* Fix warnings for updater_histmaker.cc.
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* Disable JSON serialization for now.
* Multi-class classification is checkpointing for each iteration.
This brings significant overhead.
Revert: 90355b4f007ae
* Set R tests to use binary.
* fixed some endian issues
* Use dmlc::ByteSwap() to simplify code
* Fix lint check
* [CI] Add test for s390x
* Download latest CMake on s390x
* Fix a bug in my code
* Save magic number in dmatrix with byteswap on big-endian machine
* Save version in binary with byteswap on big-endian machine
* Load scalar with byteswap in MetaInfo
* Add a debugging message
* Handle arrays correctly when byteswapping
* EOF can also be 255
* Handle magic number in MetaInfo carefully
* Skip Tree.Load test for big-endian, since the test manually builds little-endian binary model
* Handle missing packages in Python tests
* Don't use boto3 in model compatibility tests
* Add s390 Docker file for local testing
* Add model compatibility tests
* Add R compatibility test
* Revert "Add R compatibility test"
This reverts commit c2d2bdcb7dbae133cbb927fcd20f7e83ee2b18a8.
Co-authored-by: Qi Zhang <q.zhang@ibm.com>
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* Implement GK sketching on GPU.
* Strong tests on quantile building.
* Handle sparse dataset by binary searching the column index.
* Hypothesis test on dask.
* Add thread local return entry for DMatrix.
* Save feature name and feature type in binary file.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Group aware GPU weighted sketching.
* Distribute group weights to each data point.
* Relax the test.
* Validate input meta info.
* Fix metainfo copy ctor.