9 Commits

Author SHA1 Message Date
Jiaming Yuan
228a46e8ad
Support learning rate for zero-hessian objectives. (#8866) 2023-03-06 20:33:28 +08:00
Jiaming Yuan
4d665b3fb0
Restore clang tidy test. (#8861) 2023-03-03 13:47:04 -08:00
Rong Ou
7cbaee9916
Support column split in approx tree method (#8847) 2023-03-02 03:59:07 +08:00
Dmitry Razdoburdin
5bd849f1b5
Unify the partitioner for hist and approx.
Co-authored-by: dmitry.razdoburdin <drazdobu@jfldaal005.jf.intel.com>
Co-authored-by: jiamingy <jm.yuan@outlook.com>
2022-10-20 02:49:20 +08:00
Jiaming Yuan
fdf533f2b9
[POC] Experimental support for l1 error. (#7812)
Support adaptive tree, a feature supported by both sklearn and lightgbm.  The tree leaf is recomputed based on residue of labels and predictions after construction.

For l1 error, the optimal value is the median (50 percentile).

This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
2022-04-26 21:41:55 +08:00
Jiaming Yuan
4100827971
Pass infomation about objective to tree methods. (#7385)
* Define the `ObjInfo` and pass it down to every tree updater.
2021-11-04 01:52:44 +08:00
Jiaming Yuan
6671b42dd4
Use ellpack for prediction only when sparsepage doesn't exist. (#5504) 2020-04-10 12:15:46 +08:00
Jiaming Yuan
4942da64ae
Refactor tests with data generator. (#5439) 2020-03-27 06:44:44 +08:00
Jiaming Yuan
97abcc7ee2
Extract interaction constraint from split evaluator. (#5034)
*  Extract interaction constraints from split evaluator.

The reason for doing so is mostly for model IO, where num_feature and interaction_constraints are copied in split evaluator. Also interaction constraint by itself is a feature selector, acting like column sampler and it's inefficient to bury it deep in the evaluator chain. Lastly removing one another copied parameter is a win.

*  Enable inc for approx tree method.

As now the implementation is spited up from evaluator class, it's also enabled for approx method.

*  Removing obsoleted code in colmaker.

They are never documented nor actually used in real world. Also there isn't a single test for those code blocks.

*  Unifying the types used for row and column.

As the size of input dataset is marching to billion, incorrect use of int is subject to overflow, also singed integer overflow is undefined behaviour. This PR starts the procedure for unifying used index type to unsigned integers. There's optimization that can utilize this undefined behaviour, but after some testings I don't see the optimization is beneficial to XGBoost.
2019-11-14 20:11:41 +08:00