* [R] Fix global feature importance.
* Add implementation for tree index. The parameter is not documented in C API since we
should work on porting the model slicing to R instead of supporting more use of tree
index.
* Fix the difference between "gain" and "total_gain".
* debug.
* Fix prediction.
On GPU we use rouding factor to truncate the gradient for deterministic results. This PR changes the gradient representation to fixed point number with exponent aligned with rounding factor.
[breaking] Drop non-deterministic histogram.
Use fixed point for shared memory.
This PR is to improve the performance of GPU Hist.
Co-authored-by: Andy Adinets <aadinets@nvidia.com>
* [CI] Automatically build GPU-enabled R package for Windows
* Update Jenkinsfile-win64
* Build R package for the release branch only
* Update install doc
* Add `XGBOOST_RABIT_TRACKER_IP_FOR_TEST` to set rabit tracker IP
* change spark and rabit tracker IP to 127.0.0.1on GitHub Action.
Co-authored-by: fis <jm.yuan@outlook.com>
* Re-implement ROC-AUC.
* Binary
* MultiClass
* LTR
* Add documents.
This PR resolves a few issues:
- Define a value when the dataset is invalid, which can happen if there's an
empty dataset, or when the dataset contains only positive or negative values.
- Define ROC-AUC for multi-class classification.
- Define weighted average value for distributed setting.
- A correct implementation for learning to rank task. Previous
implementation is just binary classification with averaging across groups,
which doesn't measure ordered learning to rank.
* Ensure RMM is 0.18 or later
* Add use_rmm flag to global configuration
* Modify XGBCachingDeviceAllocatorImpl to skip CUB when use_rmm=True
* Update the demo
* [CI] Pin NumPy to 1.19.4, since NumPy 1.19.5 doesn't work with latest Shap
* Save feature info in booster in JSON model.
* [breaking] Remove automatic feature name generation in `DMatrix`.
This PR is to enable reliable feature validation in Python package.
This PR changes predict and inplace_predict to accept a Future of model, to avoid sending models to workers repeatably.
* Document is updated to reflect functionality additions in recent changes.
* [dask] Use a 1 line sample to infer output shape.
This is for inferring shape with direct prediction (without DaskDMatrix).
There are a few things that requires known output shape before carrying out
actual prediction, including dask meta data, output dataframe columns.
* Infer output shape based on local prediction.
* Remove set param in predict function as it's not thread safe nor necessary as
we now let dask to decide the parallelism.
* Simplify prediction on `DaskDMatrix`.
* Add management functions for global configuration: XGBSetGlobalConfig(), XGBGetGlobalConfig().
* Add Python interface: set_config(), get_config(), and config_context().
* Add unit tests for Python
* Add R interface: xgb.set.config(), xgb.get.config()
* Add unit tests for R
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>