* Change C API name.
* Test for all primitive types from array.
* Add native support for CPU 128 float.
* Convert boolean and float16 in Python.
* Fix dask version for now.
* Save feature info in booster in JSON model.
* [breaking] Remove automatic feature name generation in `DMatrix`.
This PR is to enable reliable feature validation in Python package.
* Add a new API function for predicting on `DMatrix`. This function aligns
with rest of the `XGBoosterPredictFrom*` functions on semantic of function
arguments.
* Purge `ntree_limit` from libxgboost, use iteration instead.
* [dask] Use `inplace_predict` by default for dask sklearn models.
* [dask] Run prediction shape inference on worker instead of client.
The breaking change is in the Python sklearn `apply` function, I made it to be
consistent with other prediction functions where `best_iteration` is used by
default.
* Accept array interface for csr and array.
* Accept an optional proxy dmatrix for metainfo.
This constructs an explicit `_ProxyDMatrix` type in Python.
* Remove unused doc.
* Add strict output.
This PR ensures all DMatrix types have a common interface.
* Fix logic in avoiding duplicated DMatrix in sklearn.
* Check for consistency between DMatrix types.
* Add doc for bounds.
* Initial support for distributed LTR using dask.
* Support `qid` in libxgboost.
* Refactor `predict` and `n_features_in_`, `best_[score/iteration/ntree_limit]`
to avoid duplicated code.
* Define `DaskXGBRanker`.
The dask ranker doesn't support group structure, instead it uses query id and
convert to group ptr internally.
* Implement early stopping with training continuation.
* Add new C API for obtaining boosted rounds.
* Fix off by 1 in `save_best`.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
Deprecate positional arguments in following functions:
- `__init__` for all classes in sklearn module.
- `fit` method for all classes in sklearn module.
- dask interface.
- `set_info` for `DMatrix` class.
Refactor the evaluation matrices handling.
This PR is meant the end the confusion around best_ntree_limit and unify model slicing. We have multi-class and random forests, asking users to understand how to set ntree_limit is difficult and error prone.
* Implement the save_best option in early stopping.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* fixed some endian issues
* Use dmlc::ByteSwap() to simplify code
* Fix lint check
* [CI] Add test for s390x
* Download latest CMake on s390x
* Fix a bug in my code
* Save magic number in dmatrix with byteswap on big-endian machine
* Save version in binary with byteswap on big-endian machine
* Load scalar with byteswap in MetaInfo
* Add a debugging message
* Handle arrays correctly when byteswapping
* EOF can also be 255
* Handle magic number in MetaInfo carefully
* Skip Tree.Load test for big-endian, since the test manually builds little-endian binary model
* Handle missing packages in Python tests
* Don't use boto3 in model compatibility tests
* Add s390 Docker file for local testing
* Add model compatibility tests
* Add R compatibility test
* Revert "Add R compatibility test"
This reverts commit c2d2bdcb7dbae133cbb927fcd20f7e83ee2b18a8.
Co-authored-by: Qi Zhang <q.zhang@ibm.com>
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* Add thread local return entry for DMatrix.
* Save feature name and feature type in binary file.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>