Smarter choice of histogram construction for distributed gpu_hist (#4519)

* Smarter choice of histogram construction for distributed gpu_hist

* Limit omp team size in ExecuteShards
This commit is contained in:
Rory Mitchell 2019-05-31 14:11:34 +12:00 committed by GitHub
parent dd60fc23e6
commit fbbae3386a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 67 additions and 10 deletions

View File

@ -7,6 +7,7 @@
#include <thrust/system/cuda/error.h>
#include <thrust/system_error.h>
#include <xgboost/logging.h>
#include <rabit/rabit.h>
#include "common.h"
#include "span.h"
@ -784,6 +785,7 @@ class AllReducer {
bool initialised_;
size_t allreduce_bytes_; // Keep statistics of the number of bytes communicated
size_t allreduce_calls_; // Keep statistics of the number of reduce calls
std::vector<size_t> host_data; // Used for all reduce on host
#ifdef XGBOOST_USE_NCCL
std::vector<ncclComm_t> comms;
std::vector<cudaStream_t> streams;
@ -1024,6 +1026,42 @@ class AllReducer {
return id;
}
#endif
/** \brief Perform max all reduce operation on the host. This function first
* reduces over omp threads then over nodes using rabit (which is not thread
* safe) using the master thread. Uses naive reduce algorithm for local
* threads, don't expect this to scale.*/
void HostMaxAllReduce(std::vector<size_t> *p_data) {
auto &data = *p_data;
// Wait in case some other thread is accessing host_data
#pragma omp barrier
// Reset shared buffer
#pragma omp single
{
host_data.resize(data.size());
std::fill(host_data.begin(), host_data.end(), size_t(0));
}
// Threads update shared array
for (auto i = 0ull; i < data.size(); i++) {
#pragma omp critical
{ host_data[i] = std::max(host_data[i], data[i]); }
}
// Wait until all threads are finished
#pragma omp barrier
// One thread performs all reduce across distributed nodes
#pragma omp master
{
rabit::Allreduce<rabit::op::Max, size_t>(host_data.data(),
host_data.size());
}
#pragma omp barrier
// Threads can now read back all reduced values
for (auto i = 0ull; i < data.size(); i++) {
data[i] = host_data[i];
}
}
};
/**
@ -1044,7 +1082,7 @@ void ExecuteIndexShards(std::vector<T> *shards, FunctionT f) {
bool dynamic = omp_get_dynamic();
omp_set_dynamic(false);
const long shards_size = static_cast<long>(shards->size());
#pragma omp parallel for schedule(static, 1) if (shards_size > 1)
#pragma omp parallel for schedule(static, 1) if (shards_size > 1) num_threads(shards_size)
for (long shard = 0; shard < shards_size; ++shard) {
f(shard, shards->at(shard));
}

View File

@ -1054,15 +1054,17 @@ struct DeviceShard {
auto build_hist_nidx = nidx_left;
auto subtraction_trick_nidx = nidx_right;
// If we are using a single GPU, build the histogram for the node with the
// fewest training instances
// If we are distributed, don't bother
if (reducer->IsSingleGPU()) {
bool fewer_right =
ridx_segments[nidx_right].Size() < ridx_segments[nidx_left].Size();
if (fewer_right) {
std::swap(build_hist_nidx, subtraction_trick_nidx);
}
auto left_node_rows = ridx_segments[nidx_left].Size();
auto right_node_rows = ridx_segments[nidx_right].Size();
// Decide whether to build the left histogram or right histogram
// Find the largest number of training instances on any given Shard
// Assume this will be the bottleneck and avoid building this node if
// possible
std::vector<size_t> max_reduce = {left_node_rows, right_node_rows};
reducer->HostMaxAllReduce(&max_reduce);
bool fewer_right = max_reduce[1] < max_reduce[0];
if (fewer_right) {
std::swap(build_hist_nidx, subtraction_trick_nidx);
}
this->BuildHist(build_hist_nidx);

View File

@ -95,3 +95,20 @@ void TestAllocator() {
TEST(bulkAllocator, Test) {
TestAllocator();
}
// Test thread safe max reduction
TEST(AllReducer, HostMaxAllReduce) {
dh::AllReducer reducer;
size_t num_threads = 50;
std::vector<std::vector<size_t>> thread_data(num_threads);
#pragma omp parallel num_threads(num_threads)
{
int tid = omp_get_thread_num();
thread_data[tid] = {size_t(tid)};
reducer.HostMaxAllReduce(&thread_data[tid]);
}
for (auto data : thread_data) {
ASSERT_EQ(data.front(), num_threads - 1);
}
}