Mark next release as 1.7 instead of 2.0 (#8281)

This commit is contained in:
Jiaming Yuan 2022-09-28 14:33:37 +08:00 committed by GitHub
parent 6d1452074a
commit f835368bcf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 38 additions and 39 deletions

View File

@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 3.14 FATAL_ERROR)
project(xgboost LANGUAGES CXX C VERSION 2.0.0)
project(xgboost LANGUAGES CXX C VERSION 1.7.0)
include(cmake/Utils.cmake)
list(APPEND CMAKE_MODULE_PATH "${xgboost_SOURCE_DIR}/cmake/modules")
cmake_policy(SET CMP0022 NEW)

View File

@ -1,8 +1,8 @@
Package: xgboost
Type: Package
Title: Extreme Gradient Boosting
Version: 2.0.0.1
Date: 2022-03-29
Version: 1.7.0.1
Date: 2022-09-28
Authors@R: c(
person("Tianqi", "Chen", role = c("aut"),
email = "tianqi.tchen@gmail.com"),

View File

@ -347,7 +347,7 @@ and then loading the model in another session:
.. note::
Besides dumping the model to raw format, users are able to dump the model to be json or ubj format from ``version 2.0.0+``.
Besides dumping the model to raw format, users are able to dump the model to be json or ubj format from ``version 1.7.0+``.
.. code-block:: scala
@ -362,7 +362,7 @@ Interact with Other Bindings of XGBoost
After we train a model with XGBoost4j-Spark on massive dataset, sometimes we want to do model serving
in single machine or integrate it with other single node libraries for further processing.
After saving the model, we can load this model with single node Python XGBoost directly from ``version 2.0.0+``.
After saving the model, we can load this model with single node Python XGBoost directly from ``version 1.7.0+``.
.. code-block:: scala
@ -375,7 +375,7 @@ After saving the model, we can load this model with single node Python XGBoost d
bst = xgb.Booster({'nthread': 4})
bst.load_model("/tmp/xgbClassificationModel/data/XGBoostClassificationModel")
Before ``version 2.0.0``, XGBoost4j-Spark needs to export model to local manually by:
Before ``version 1.7.0``, XGBoost4j-Spark needs to export model to local manually by:
.. code-block:: scala

View File

@ -237,7 +237,7 @@ These parameters are only used for training with categorical data. See
.. versionadded:: 1.6
.. note:: This parameter is experimental. ``exact`` tree method is not supported yet.
.. note:: This parameter is experimental. ``exact`` tree method is not yet supported.
- A threshold for deciding whether XGBoost should use one-hot encoding based split for
categorical data. When number of categories is lesser than the threshold then one-hot
@ -247,10 +247,9 @@ These parameters are only used for training with categorical data. See
* ``max_cat_threshold``
.. versionadded:: 2.0
.. versionadded:: 1.7.0
.. note:: This parameter is experimental. ``exact`` and ``gpu_hist`` tree methods are
not supported yet.
.. note:: This parameter is experimental. ``exact`` tree method is not yet supported.
- Maximum number of categories considered for each split. Used only by partition-based
splits for preventing over-fitting.

View File

@ -508,7 +508,7 @@ dask config is used:
IPv6 Support
************
.. versionadded:: 2.0.0
.. versionadded:: 1.7.0
XGBoost has initial IPv6 support for the dask interface on Linux. Due to most of the
cluster support for IPv6 is partial (dual stack instead of IPv6 only), we require

View File

@ -1,8 +1,8 @@
###############################
Using XGBoost PySpark Estimator
###############################
Starting from version 2.0, xgboost supports pyspark estimator APIs.
The feature is still experimental and not yet ready for production use.
Starting from version 1.7.0, xgboost supports pyspark estimator APIs. The feature is
still experimental and not yet ready for production use.
*****************
SparkXGBRegressor

View File

@ -453,7 +453,7 @@ XGB_DLL int XGQuantileDMatrixCreateFromCallback(DataIterHandle iter, DMatrixHand
/*!
* \brief Create a Device Quantile DMatrix with data iterator.
* \deprecated since 2.0
* \deprecated since 1.7.0
* \see XGQuantileDMatrixCreateFromCallback()
*/
XGB_DLL int XGDeviceQuantileDMatrixCreateFromCallback(DataIterHandle iter, DMatrixHandle proxy,

View File

@ -4,8 +4,8 @@
#ifndef XGBOOST_VERSION_CONFIG_H_
#define XGBOOST_VERSION_CONFIG_H_
#define XGBOOST_VER_MAJOR 2
#define XGBOOST_VER_MINOR 0
#define XGBOOST_VER_MAJOR 1
#define XGBOOST_VER_MINOR 7
#define XGBOOST_VER_PATCH 0
#endif // XGBOOST_VERSION_CONFIG_H_

View File

@ -6,7 +6,7 @@
<groupId>ml.dmlc</groupId>
<artifactId>xgboost-jvm_2.12</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
<packaging>pom</packaging>
<name>XGBoost JVM Package</name>
<description>JVM Package for XGBoost</description>

View File

@ -6,10 +6,10 @@
<parent>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost-jvm_2.12</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
</parent>
<artifactId>xgboost4j-example_2.12</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
<packaging>jar</packaging>
<build>
<plugins>
@ -26,7 +26,7 @@
<dependency>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j-spark_${scala.binary.version}</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
@ -37,7 +37,7 @@
<dependency>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j-flink_${scala.binary.version}</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>

View File

@ -6,10 +6,10 @@
<parent>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost-jvm_2.12</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
</parent>
<artifactId>xgboost4j-flink_2.12</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
<build>
<plugins>
<plugin>
@ -26,7 +26,7 @@
<dependency>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j_${scala.binary.version}</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>

View File

@ -6,10 +6,10 @@
<parent>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost-jvm_2.12</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
</parent>
<artifactId>xgboost4j-gpu_2.12</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
<packaging>jar</packaging>
<dependencies>

View File

@ -6,7 +6,7 @@
<parent>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost-jvm_2.12</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
</parent>
<artifactId>xgboost4j-spark-gpu_2.12</artifactId>
<build>
@ -24,7 +24,7 @@
<dependency>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j-gpu_${scala.binary.version}</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>

View File

@ -6,7 +6,7 @@
<parent>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost-jvm_2.12</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
</parent>
<artifactId>xgboost4j-spark_2.12</artifactId>
<build>
@ -24,7 +24,7 @@
<dependency>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j_${scala.binary.version}</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>

View File

@ -6,10 +6,10 @@
<parent>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost-jvm_2.12</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
</parent>
<artifactId>xgboost4j_2.12</artifactId>
<version>2.0.0-SNAPSHOT</version>
<version>1.7.0-SNAPSHOT</version>
<packaging>jar</packaging>
<dependencies>

View File

@ -1 +1 @@
2.0.0-dev
1.7.0-dev

View File

@ -1249,7 +1249,7 @@ class QuantileDMatrix(DMatrix):
reference (the training dataset) ``QuantileDMatrix`` using ``ref`` as some
information may be lost in quantisation.
.. versionadded:: 2.0.0
.. versionadded:: 1.7.0
Parameters
----------
@ -1373,7 +1373,7 @@ class QuantileDMatrix(DMatrix):
class DeviceQuantileDMatrix(QuantileDMatrix):
""" Use `QuantileDMatrix` instead.
.. deprecated:: 2.0.0
.. deprecated:: 1.7.0
.. versionadded:: 1.1.0

View File

@ -695,7 +695,7 @@ class DaskQuantileDMatrix(DaskDMatrix):
class DaskDeviceQuantileDMatrix(DaskQuantileDMatrix):
"""Use `DaskQuantileDMatrix` instead.
.. deprecated:: 2.0.0
.. deprecated:: 1.7.0
.. versionadded:: 1.2.0

View File

@ -235,7 +235,7 @@ __model_doc = f"""
feature_types : FeatureTypes
.. versionadded:: 2.0.0
.. versionadded:: 1.7.0
Used for specifying feature types without constructing a dataframe. See
:py:class:`DMatrix` for details.
@ -1402,9 +1402,9 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
# must match the parameters for `get_params`
self.use_label_encoder = use_label_encoder
if use_label_encoder is True:
raise ValueError("Label encoder was removed in 1.6.")
raise ValueError("Label encoder was removed in 1.6.0.")
if use_label_encoder is not None:
warnings.warn("`use_label_encoder` is deprecated in 2.0.0.")
warnings.warn("`use_label_encoder` is deprecated in 1.7.0.")
super().__init__(objective=objective, **kwargs)
@_deprecate_positional_args