diff --git a/README.md b/README.md index c775c9776..c7e22d706 100644 --- a/README.md +++ b/README.md @@ -15,6 +15,8 @@ Features - Sparse feature format allows easy handling of missing values, and improve computation efficiency. * Push the limit on single machine: - Efficient implementation that optimizes memory and computation. +* Speed: XGBoost is very fast + - IN [demo/higgs/speedtest.py](../blob/master/demo/kaggle-higgs/speedtest.py), kaggle higgs data it is faster(on our machine 20 times faster using 4 threads) than sklearn.ensemble.GradientBoostingClassifier * Layout of gradient boosting algorithm to support user defined objective * Python interface, works with numpy and scipy.sparse matrix diff --git a/demo/kaggle-higgs/README.md b/demo/kaggle-higgs/README.md index b3db23266..28472a848 100644 --- a/demo/kaggle-higgs/README.md +++ b/demo/kaggle-higgs/README.md @@ -14,8 +14,6 @@ make 3. Run ./run.sh - - Speed ===== speedtest.py compares xgboost's speed on this dataset with sklearn.GBM