diff --git a/demo/guide-python/sklearn_examples.py b/demo/guide-python/sklearn_examples.py index ce8c8d01e..56fed1dd2 100755 --- a/demo/guide-python/sklearn_examples.py +++ b/demo/guide-python/sklearn_examples.py @@ -8,7 +8,7 @@ import pickle import xgboost as xgb import numpy as np -from sklearn.cross_validation import KFold +from sklearn.cross_validation import KFold, train_test_split from sklearn.metrics import confusion_matrix, mean_squared_error from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_iris, load_digits, load_boston @@ -65,3 +65,23 @@ print("Pickling sklearn API models") pickle.dump(clf, open("best_boston.pkl", "wb")) clf2 = pickle.load(open("best_boston.pkl", "rb")) print(np.allclose(clf.predict(X), clf2.predict(X))) + +# Early-stopping + +X = digits['data'] +y = digits['target'] +X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) +clf = xgb.XGBClassifier() +clf.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc", + eval_set=[(X_test, y_test)]) + +# Custom evaluation function +from sklearn.metrics import log_loss + + +def log_loss_eval(y_pred, y_true): + return "log-loss", log_loss(y_true.get_label(), y_pred) + + +clf.fit(X_train, y_train, early_stopping_rounds=10, eval_metric=log_loss_eval, + eval_set=[(X_test, y_test)]) diff --git a/wrapper/xgboost.py b/wrapper/xgboost.py index 7a601424c..77f5bedb8 100644 --- a/wrapper/xgboost.py +++ b/wrapper/xgboost.py @@ -6,7 +6,7 @@ Version: 0.40 Authors: Tianqi Chen, Bing Xu Early stopping by Zygmunt ZajÄ…c """ -# pylint: disable=too-many-arguments, too-many-locals, too-many-lines, invalid-name +# pylint: disable=too-many-arguments, too-many-locals, too-many-lines, invalid-name, fixme from __future__ import absolute_import import os @@ -738,7 +738,7 @@ class Booster(object): def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, - early_stopping_rounds=None, evals_result=None): + early_stopping_rounds=None, evals_result=None, verbose_eval=True): # pylint: disable=too-many-statements,too-many-branches, attribute-defined-outside-init """Train a booster with given parameters. @@ -767,12 +767,14 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, bst.best_score and bst.best_iteration. evals_result: dict This dictionary stores the evaluation results of all the items in watchlist + verbose_eval : bool + If `verbose_eval` then the evaluation metric on the validation set, if + given, is printed at each boosting stage. Returns ------- booster : a trained booster model """ - evals = list(evals) bst = Booster(params, [dtrain] + [d[0] for d in evals]) @@ -782,7 +784,7 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, else: evals_name = [d[1] for d in evals] evals_result.clear() - evals_result.update({key:[] for key in evals_name}) + evals_result.update({key: [] for key in evals_name}) if not early_stopping_rounds: for i in range(num_boost_round): @@ -794,9 +796,10 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, else: msg = bst_eval_set.decode() - sys.stderr.write(msg + '\n') + if verbose_eval: + sys.stderr.write(msg + '\n') if evals_result is not None: - res = re.findall(":([0-9.]+).", msg) + res = re.findall(":-?([0-9.]+).", msg) for key, val in zip(evals_name, res): evals_result[key].append(val) return bst @@ -840,10 +843,11 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, else: msg = bst_eval_set.decode() - sys.stderr.write(msg + '\n') + if verbose_eval: + sys.stderr.write(msg + '\n') if evals_result is not None: - res = re.findall(":([0-9.]+).", msg) + res = re.findall(":-([0-9.]+).", msg) for key, val in zip(evals_name, res): evals_result[key].append(val) @@ -1074,6 +1078,8 @@ class XGBModel(XGBModelBase): params = super(XGBModel, self).get_params(deep=deep) if params['missing'] is np.nan: params['missing'] = None # sklearn doesn't handle nan. see #4725 + if not params.get('eval_metric', True): + del params['eval_metric'] # don't give as None param to Booster return params def get_xgb_params(self): @@ -1086,10 +1092,71 @@ class XGBModel(XGBModelBase): xgb_params.pop('nthread', None) return xgb_params - def fit(self, data, y): - # pylint: disable=missing-docstring,invalid-name - train_dmatrix = DMatrix(data, label=y, missing=self.missing) - self._Booster = train(self.get_xgb_params(), train_dmatrix, self.n_estimators) + def fit(self, X, y, eval_set=None, eval_metric=None, + early_stopping_rounds=None, verbose=True): + # pylint: disable=missing-docstring,invalid-name,attribute-defined-outside-init + """ + Fit the gradient boosting model + + Parameters + ---------- + X : array_like + Feature matrix + y : array_like + Labels + eval_set : list, optional + A list of (X, y) tuple pairs to use as a validation set for + early-stopping + eval_metric : str, callable, optional + If a str, should be a built-in evaluation metric to use. See + doc/parameter.md. If callable, a custom evaluation metric. The call + signature is func(y_predicted, y_true) where y_true will be a + DMatrix object such that you may need to call the get_label + method. It must return a str, value pair where the str is a name + for the evaluation and value is the value of the evaluation + function. This objective is always minimized. + early_stopping_rounds : int + Activates early stopping. Validation error needs to decrease at + least every round(s) to continue training. + Requires at least one item in evals. If there's more than one, + will use the last. Returns the model from the last iteration + (not the best one). If early stopping occurs, the model will + have two additional fields: bst.best_score and bst.best_iteration. + verbose : bool + If `verbose` and an evaluation set is used, writes the evaluation + metric measured on the validation set to stderr. + """ + trainDmatrix = DMatrix(X, label=y, missing=self.missing) + + eval_results = {} + if eval_set is not None: + evals = list(DMatrix(x[0], label=x[1]) for x in eval_set) + evals = list(zip(evals, ["validation_{}".format(i) for i in + range(len(evals))])) + else: + evals = () + + params = self.get_xgb_params() + + feval = eval_metric if callable(eval_metric) else None + if eval_metric is not None: + if callable(eval_metric): + eval_metric = None + else: + params.update({'eval_metric': eval_metric}) + + self._Booster = train(params, trainDmatrix, + self.n_estimators, evals=evals, + early_stopping_rounds=early_stopping_rounds, + evals_result=eval_results, feval=feval, + verbose_eval=verbose) + if eval_results: + eval_results = {k: np.array(v, dtype=float) + for k, v in eval_results.items()} + eval_results = {k: np.array(v) for k, v in eval_results.items()} + self.eval_results_ = eval_results + self.best_score_ = self._Booster.best_score + self.best_iteration_ = self._Booster.best_iteration return self def predict(self, data): @@ -1117,8 +1184,43 @@ class XGBClassifier(XGBModel, XGBClassifierBase): colsample_bytree, base_score, seed, missing) - def fit(self, X, y, sample_weight=None): + def fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None, + early_stopping_rounds=None, verbose=True): # pylint: disable = attribute-defined-outside-init,arguments-differ + """ + Fit gradient boosting classifier + + Parameters + ---------- + X : array_like + Feature matrix + y : array_like + Labels + sample_weight : array_like + Weight for each instance + eval_set : list, optional + A list of (X, y) pairs to use as a validation set for + early-stopping + eval_metric : str, callable, optional + If a str, should be a built-in evaluation metric to use. See + doc/parameter.md. If callable, a custom evaluation metric. The call + signature is func(y_predicted, y_true) where y_true will be a + DMatrix object such that you may need to call the get_label + method. It must return a str, value pair where the str is a name + for the evaluation and value is the value of the evaluation + function. This objective is always minimized. + early_stopping_rounds : int, optional + Activates early stopping. Validation error needs to decrease at + least every round(s) to continue training. + Requires at least one item in evals. If there's more than one, + will use the last. Returns the model from the last iteration + (not the best one). If early stopping occurs, the model will + have two additional fields: bst.best_score and bst.best_iteration. + verbose : bool + If `verbose` and an evaluation set is used, writes the evaluation + metric measured on the validation set to stderr. + """ + eval_results = {} self.classes_ = list(np.unique(y)) self.n_classes_ = len(self.classes_) if self.n_classes_ > 2: @@ -1129,6 +1231,22 @@ class XGBClassifier(XGBModel, XGBClassifierBase): else: xgb_options = self.get_xgb_params() + feval = eval_metric if callable(eval_metric) else None + if eval_metric is not None: + if callable(eval_metric): + eval_metric = None + else: + xgb_options.update({"eval_metric": eval_metric}) + + if eval_set is not None: + # TODO: use sample_weight if given? + evals = list(DMatrix(x[0], label=x[1]) for x in eval_set) + nevals = len(evals) + eval_names = ["validation_{}".format(i) for i in range(nevals)] + evals = list(zip(evals, eval_names)) + else: + evals = () + self._le = LabelEncoder().fit(y) training_labels = self._le.transform(y) @@ -1139,7 +1257,18 @@ class XGBClassifier(XGBModel, XGBClassifierBase): train_dmatrix = DMatrix(X, label=training_labels, missing=self.missing) - self._Booster = train(xgb_options, train_dmatrix, self.n_estimators) + self._Booster = train(xgb_options, train_dmatrix, self.n_estimators, + evals=evals, + early_stopping_rounds=early_stopping_rounds, + evals_result=eval_results, feval=feval, + verbose_eval=verbose) + + if eval_results: + eval_results = {k: np.array(v, dtype=float) + for k, v in eval_results.items()} + self.eval_results_ = eval_results + self.best_score_ = self._Booster.best_score + self.best_iteration_ = self._Booster.best_iteration return self