implementation of map ranking algorithm on gpu (#5129)

* - implementation of map ranking algorithm
  - also effected necessary suggestions mentioned in the earlier ranking pr's
  - made some performance improvements to the ndcg algo as well
This commit is contained in:
sriramch 2019-12-26 15:05:38 -08:00 committed by Rory Mitchell
parent 9b0af6e882
commit ee81ba8e1f
6 changed files with 714 additions and 266 deletions

View File

@ -142,31 +142,92 @@ DEV_INLINE void AtomicOrByte(unsigned int* __restrict__ buffer, size_t ibyte, un
atomicOr(&buffer[ibyte / sizeof(unsigned int)], (unsigned int)b << (ibyte % (sizeof(unsigned int)) * 8)); atomicOr(&buffer[ibyte / sizeof(unsigned int)], (unsigned int)b << (ibyte % (sizeof(unsigned int)) * 8));
} }
/*! namespace internal {
* \brief Find the strict upper bound for an element in a sorted array
* using binary search.
* \param cuts pointer to the first element of the sorted array
* \param n length of the sorted array
* \param v value for which to find the upper bound
* \return the smallest index i such that v < cuts[i], or n if v is greater or equal
* than all elements of the array
*/
template <typename T>
DEV_INLINE int UpperBound(const T* __restrict__ cuts, int n, T v) {
if (n == 0) { return 0; }
if (cuts[n - 1] <= v) { return n; }
if (cuts[0] > v) { return 0; }
int left = 0, right = n - 1; // Items of size 'n' are sorted in an order determined by the Comparator
while (right - left > 1) { // If left is true, find the number of elements where 'comp(item, v)' returns true;
int middle = left + (right - left) / 2; // 0 if nothing is true
if (cuts[middle] > v) { // If left is false, find the number of elements where '!comp(item, v)' returns true;
right = middle; // 0 if nothing is true
template <typename T, typename Comparator = thrust::greater<T>>
XGBOOST_DEVICE __forceinline__ uint32_t
CountNumItemsImpl(bool left, const T * __restrict__ items, uint32_t n, T v,
const Comparator &comp = Comparator()) {
const T *items_begin = items;
uint32_t num_remaining = n;
const T *middle_item = nullptr;
uint32_t middle;
while (num_remaining > 0) {
middle_item = items_begin;
middle = num_remaining / 2;
middle_item += middle;
if ((left && comp(*middle_item, v)) || (!left && !comp(v, *middle_item))) {
items_begin = ++middle_item;
num_remaining -= middle + 1;
} else { } else {
left = middle; num_remaining = middle;
} }
} }
return right;
return left ? items_begin - items : items + n - items_begin;
}
}
/*!
* \brief Find the strict upper bound for an element in a sorted array
* using binary search.
* \param items pointer to the first element of the sorted array
* \param n length of the sorted array
* \param v value for which to find the upper bound
* \param comp determines how the items are sorted ascending/descending order - should conform
* to ordering semantics
* \return the smallest index i that has a value > v, or n if none is larger when sorted ascendingly
* or, an index i with a value < v, or 0 if none is smaller when sorted descendingly
*/
// Preserve existing default behavior of upper bound
template <typename T, typename Comp = thrust::less<T>>
XGBOOST_DEVICE __forceinline__ uint32_t UpperBound(const T *__restrict__ items,
uint32_t n,
T v,
const Comp &comp = Comp()) {
if (std::is_same<Comp, thrust::less<T>>::value ||
std::is_same<Comp, thrust::greater<T>>::value) {
return n - internal::CountNumItemsImpl(false, items, n, v, comp);
} else {
static_assert(std::is_same<Comp, thrust::less<T>>::value ||
std::is_same<Comp, thrust::greater<T>>::value,
"Invalid comparator used in Upperbound - can only be thrust::greater/less");
return std::numeric_limits<uint32_t>::max(); // Simply to quiesce the compiler
}
}
/*!
* \brief Find the strict lower bound for an element in a sorted array
* using binary search.
* \param items pointer to the first element of the sorted array
* \param n length of the sorted array
* \param v value for which to find the upper bound
* \param comp determines how the items are sorted ascending/descending order - should conform
* to ordering semantics
* \return the smallest index i that has a value >= v, or n if none is larger
* when sorted ascendingly
* or, an index i with a value <= v, or 0 if none is smaller when sorted descendingly
*/
template <typename T, typename Comp = thrust::less<T>>
XGBOOST_DEVICE __forceinline__ uint32_t LowerBound(const T *__restrict__ items,
uint32_t n,
T v,
const Comp &comp = Comp()) {
if (std::is_same<Comp, thrust::less<T>>::value ||
std::is_same<Comp, thrust::greater<T>>::value) {
return internal::CountNumItemsImpl(true, items, n, v, comp);
} else {
static_assert(std::is_same<Comp, thrust::less<T>>::value ||
std::is_same<Comp, thrust::greater<T>>::value,
"Invalid comparator used in LowerBound - can only be thrust::greater/less");
return std::numeric_limits<uint32_t>::max(); // Simply to quiesce the compiler
}
} }
template <typename T> template <typename T>
@ -510,7 +571,7 @@ void CopyDeviceSpan(xgboost::common::Span<T> dst,
class BulkAllocator { class BulkAllocator {
std::vector<char *> d_ptr_; std::vector<char *> d_ptr_;
std::vector<size_t> size_; std::vector<size_t> size_;
std::vector<int> device_idx_; int device_idx_{-1};
static const int kAlign = 256; static const int kAlign = 256;
@ -593,14 +654,15 @@ class BulkAllocator {
* This frees the GPU memory managed by this allocator. * This frees the GPU memory managed by this allocator.
*/ */
void Clear() { void Clear() {
for (size_t i = 0; i < d_ptr_.size(); i++) { // NOLINT(modernize-loop-convert) if (d_ptr_.empty()) return;
if (d_ptr_[i] != nullptr) {
safe_cuda(cudaSetDevice(device_idx_[i])); safe_cuda(cudaSetDevice(device_idx_));
XGBDeviceAllocator<char> allocator; size_t idx = 0;
allocator.deallocate(thrust::device_ptr<char>(d_ptr_[i]), size_[i]); std::for_each(d_ptr_.begin(), d_ptr_.end(), [&](char *dptr) {
d_ptr_[i] = nullptr; XGBDeviceAllocator<char>().deallocate(thrust::device_ptr<char>(dptr), size_[idx++]);
} });
} d_ptr_.clear();
size_.clear();
} }
~BulkAllocator() { ~BulkAllocator() {
@ -614,6 +676,8 @@ class BulkAllocator {
template <typename... Args> template <typename... Args>
void Allocate(int device_idx, Args... args) { void Allocate(int device_idx, Args... args) {
if (device_idx_ == -1) device_idx_ = device_idx;
else CHECK(device_idx_ == device_idx);
size_t size = GetSizeBytes(args...); size_t size = GetSizeBytes(args...);
char *ptr = AllocateDevice(device_idx, size); char *ptr = AllocateDevice(device_idx, size);
@ -622,7 +686,6 @@ class BulkAllocator {
d_ptr_.push_back(ptr); d_ptr_.push_back(ptr);
size_.push_back(size); size_.push_back(size);
device_idx_.push_back(device_idx);
} }
}; };

View File

@ -18,6 +18,7 @@
#if defined(__CUDACC__) #if defined(__CUDACC__)
#include <thrust/sort.h> #include <thrust/sort.h>
#include <thrust/gather.h> #include <thrust/gather.h>
#include <thrust/iterator/discard_iterator.h>
#include <thrust/random/uniform_int_distribution.h> #include <thrust/random/uniform_int_distribution.h>
#include <thrust/random/linear_congruential_engine.h> #include <thrust/random/linear_congruential_engine.h>
@ -64,6 +65,9 @@ class SegmentSorter {
// Need this on the device as it is used in the kernels // Need this on the device as it is used in the kernels
dh::caching_device_vector<uint32_t> dgroups_; // Group information on device dh::caching_device_vector<uint32_t> dgroups_; // Group information on device
// Where did the item that was originally present at position 'x' move to after they are sorted
dh::caching_device_vector<uint32_t> dindexable_sorted_pos_;
// Initialize everything but the segments // Initialize everything but the segments
void Init(uint32_t num_elems) { void Init(uint32_t num_elems) {
ditems_.resize(num_elems); ditems_.resize(num_elems);
@ -87,28 +91,42 @@ class SegmentSorter {
dgroups_ = groups; dgroups_ = groups;
// Launch a kernel that populates the segment information for the different groups // Define the segments by assigning a group ID to each element
uint32_t *gsegs = group_segments_.data().get();
const uint32_t *dgroups = dgroups_.data().get(); const uint32_t *dgroups = dgroups_.data().get();
uint32_t ngroups = dgroups_.size(); uint32_t ngroups = dgroups_.size();
int device_id = -1; auto ComputeGroupIDLambda = [=] __device__(uint32_t idx) {
dh::safe_cuda(cudaGetDevice(&device_id)); return dh::UpperBound(dgroups, ngroups, idx) - 1;
dh::LaunchN(device_id, num_elems, nullptr, [=] __device__(uint32_t idx){ }; // NOLINT
// Find the group first
uint32_t group_idx = dh::UpperBound(dgroups, ngroups, idx); thrust::transform(thrust::make_counting_iterator(static_cast<uint32_t>(0)),
gsegs[idx] = group_idx - 1; thrust::make_counting_iterator(num_elems),
}); group_segments_.begin(),
ComputeGroupIDLambda);
} }
// Accessors that returns device pointer // Accessors that returns device pointer
inline const T *Items() const { return ditems_.data().get(); } inline const T *GetItemsPtr() const { return ditems_.data().get(); }
inline uint32_t NumItems() const { return ditems_.size(); } inline uint32_t GetNumItems() const { return ditems_.size(); }
inline const uint32_t *OriginalPositions() const { return doriginal_pos_.data().get(); } inline const dh::caching_device_vector<T> &GetItems() const {
inline const dh::caching_device_vector<uint32_t> &GroupSegments() const { return ditems_;
}
inline const uint32_t *GetOriginalPositionsPtr() const { return doriginal_pos_.data().get(); }
inline const dh::caching_device_vector<uint32_t> &GetOriginalPositions() const {
return doriginal_pos_;
}
inline const dh::caching_device_vector<uint32_t> &GetGroupSegments() const {
return group_segments_; return group_segments_;
} }
inline uint32_t NumGroups() const { return dgroups_.size() - 1; }
inline const uint32_t *GroupIndices() const { return dgroups_.data().get(); } inline uint32_t GetNumGroups() const { return dgroups_.size() - 1; }
inline const uint32_t *GetGroupsPtr() const { return dgroups_.data().get(); }
inline const dh::caching_device_vector<uint32_t> &GetGroups() const { return dgroups_; }
inline const dh::caching_device_vector<uint32_t> &GetIndexableSortedPositions() const {
return dindexable_sorted_pos_;
}
// Sort an array that is divided into multiple groups. The array is sorted within each group. // Sort an array that is divided into multiple groups. The array is sorted within each group.
// This version provides the group information that is on the host. // This version provides the group information that is on the host.
@ -183,45 +201,31 @@ class SegmentSorter {
thrust::gather(doriginal_pos_.begin(), doriginal_pos_.end(), thrust::gather(doriginal_pos_.begin(), doriginal_pos_.end(),
thrust::device_ptr<const T>(ditems), ditems_.begin()); thrust::device_ptr<const T>(ditems), ditems_.begin());
} }
// Determine where an item that was originally present at position 'x' has been relocated to
// after a sort. Creation of such an index has to be explicitly requested after a sort
void CreateIndexableSortedPositions() {
dindexable_sorted_pos_.resize(GetNumItems());
thrust::scatter(thrust::make_counting_iterator(static_cast<uint32_t>(0)),
thrust::make_counting_iterator(GetNumItems()), // Rearrange indices...
// ...based on this map
thrust::device_ptr<const uint32_t>(GetOriginalPositionsPtr()),
dindexable_sorted_pos_.begin()); // Write results into this
}
}; };
// Helper functions // Helper functions
// Items of size 'n' are sorted in a descending order
// If left is true, find the number of elements > v; 0 if nothing is greater
// If left is false, find the number of elements < v; 0 if nothing is lesser
template <typename T>
XGBOOST_DEVICE __forceinline__ uint32_t
CountNumItemsImpl(bool left, const T * __restrict__ items, uint32_t n, T v) {
const T *items_begin = items;
uint32_t num_remaining = n;
const T *middle_item = nullptr;
uint32_t middle;
while (num_remaining > 0) {
middle_item = items_begin;
middle = num_remaining / 2;
middle_item += middle;
if ((left && *middle_item > v) || (!left && !(v > *middle_item))) {
items_begin = ++middle_item;
num_remaining -= middle + 1;
} else {
num_remaining = middle;
}
}
return left ? items_begin - items : items + n - items_begin;
}
template <typename T> template <typename T>
XGBOOST_DEVICE __forceinline__ uint32_t XGBOOST_DEVICE __forceinline__ uint32_t
CountNumItemsToTheLeftOf(const T * __restrict__ items, uint32_t n, T v) { CountNumItemsToTheLeftOf(const T * __restrict__ items, uint32_t n, T v) {
return CountNumItemsImpl(true, items, n, v); return dh::LowerBound(items, n, v, thrust::greater<T>());
} }
template <typename T> template <typename T>
XGBOOST_DEVICE __forceinline__ uint32_t XGBOOST_DEVICE __forceinline__ uint32_t
CountNumItemsToTheRightOf(const T * __restrict__ items, uint32_t n, T v) { CountNumItemsToTheRightOf(const T * __restrict__ items, uint32_t n, T v) {
return CountNumItemsImpl(false, items, n, v); return n - dh::UpperBound(items, n, v, thrust::greater<T>());
} }
#endif #endif
@ -262,7 +266,8 @@ struct LambdaPair {
: pos_index(pos_index), neg_index(neg_index), weight(weight) {} : pos_index(pos_index), neg_index(neg_index), weight(weight) {}
}; };
struct PairwiseLambdaWeightComputer { class PairwiseLambdaWeightComputer {
public:
/*! /*!
* \brief get lambda weight for existing pairs - for pairwise objective * \brief get lambda weight for existing pairs - for pairwise objective
* \param list a list that is sorted by pred score * \param list a list that is sorted by pred score
@ -275,65 +280,131 @@ struct PairwiseLambdaWeightComputer {
return "rank:pairwise"; return "rank:pairwise";
} }
// Stopgap method - will be removed when we support other type of ranking - map
// on GPU later
inline static bool SupportOnGPU() { return true; }
#if defined(__CUDACC__) #if defined(__CUDACC__)
PairwiseLambdaWeightComputer(const bst_float *dpreds, PairwiseLambdaWeightComputer(const bst_float *dpreds,
uint32_t pred_size, const bst_float *dlabels,
const SegmentSorter<float> &segment_label_sorter) {} const SegmentSorter<float> &segment_label_sorter) {}
struct PairwiseLambdaWeightMultiplier { class PairwiseLambdaWeightMultiplier {
public:
// Adjust the items weight by this value // Adjust the items weight by this value
__device__ __forceinline__ bst_float GetWeight(uint32_t gidx, int pidx, int nidx) const { __device__ __forceinline__ bst_float GetWeight(uint32_t gidx, int pidx, int nidx) const {
return 1.0f; return 1.0f;
} }
}; };
inline PairwiseLambdaWeightMultiplier GetWeightMultiplier() const { inline const PairwiseLambdaWeightMultiplier GetWeightMultiplier() const {
return {}; return {};
} }
#endif #endif
}; };
#if defined(__CUDACC__)
class BaseLambdaWeightMultiplier {
public:
BaseLambdaWeightMultiplier(const SegmentSorter<float> &segment_label_sorter,
const SegmentSorter<float> &segment_pred_sorter)
: dsorted_labels_(segment_label_sorter.GetItemsPtr()),
dorig_pos_(segment_label_sorter.GetOriginalPositionsPtr()),
dgroups_(segment_label_sorter.GetGroupsPtr()),
dindexable_sorted_preds_pos_ptr_(
segment_pred_sorter.GetIndexableSortedPositions().data().get()) {}
protected:
const float *dsorted_labels_{nullptr}; // Labels sorted within a group
const uint32_t *dorig_pos_{nullptr}; // Original indices of the labels before they are sorted
const uint32_t *dgroups_{nullptr}; // The group indices
// Where can a prediction for a label be found in the original array, when they are sorted
const uint32_t *dindexable_sorted_preds_pos_ptr_{nullptr};
};
// While computing the weight that needs to be adjusted by this ranking objective, we need
// to figure out where positive and negative labels chosen earlier exists, if the group
// were to be sorted by its predictions. To accommodate this, we employ the following algorithm.
// For a given group, let's assume the following:
// labels: 1 5 9 2 4 8 0 7 6 3
// predictions: 1 9 0 8 2 7 3 6 5 4
// position: 0 1 2 3 4 5 6 7 8 9
//
// After label sort:
// labels: 9 8 7 6 5 4 3 2 1 0
// position: 2 5 7 8 1 4 9 3 0 6
//
// After prediction sort:
// predictions: 9 8 7 6 5 4 3 2 1 0
// position: 1 3 5 7 8 9 6 4 0 2
//
// If a sorted label at position 'x' is chosen, then we need to find out where the prediction
// for this label 'x' exists, if the group were to be sorted by predictions.
// We first take the sorted prediction positions:
// position: 1 3 5 7 8 9 6 4 0 2
// at indices: 0 1 2 3 4 5 6 7 8 9
//
// We create a sorted prediction positional array, such that value at position 'x' gives
// us the position in the sorted prediction array where its related prediction lies.
// dindexable_sorted_preds_pos_ptr_: 8 0 9 1 7 2 6 3 4 5
// at indices: 0 1 2 3 4 5 6 7 8 9
// Basically, swap the previous 2 arrays, sort the indices and reorder positions
// for an O(1) lookup using the position where the sorted label exists.
//
// This type does that using the SegmentSorter
class IndexablePredictionSorter {
public:
IndexablePredictionSorter(const bst_float *dpreds,
const SegmentSorter<float> &segment_label_sorter) {
// Sort the predictions first
segment_pred_sorter_.SortItems(dpreds, segment_label_sorter.GetNumItems(),
segment_label_sorter.GetGroupSegments());
// Create an index for the sorted prediction positions
segment_pred_sorter_.CreateIndexableSortedPositions();
}
inline const SegmentSorter<float> &GetPredictionSorter() const {
return segment_pred_sorter_;
}
private:
SegmentSorter<float> segment_pred_sorter_; // For sorting the predictions
};
#endif
// beta version: NDCG lambda rank // beta version: NDCG lambda rank
struct NDCGLambdaWeightComputer { class NDCGLambdaWeightComputer
#if defined(__CUDACC__)
: public IndexablePredictionSorter
#endif
{
public: public:
#if defined(__CUDACC__) #if defined(__CUDACC__)
// This function object computes the group's DCG for a given group // This function object computes the item's DCG value
struct ComputeGroupDCG { class ComputeItemDCG : public thrust::unary_function<uint32_t, float> {
public: public:
XGBOOST_DEVICE ComputeGroupDCG(const float *dsorted_labels, const uint32_t *dgroups) XGBOOST_DEVICE ComputeItemDCG(const float *dsorted_labels,
const uint32_t *dgroups,
const uint32_t *gidxs)
: dsorted_labels_(dsorted_labels), : dsorted_labels_(dsorted_labels),
dgroups_(dgroups) {} dgroups_(dgroups),
dgidxs_(gidxs) {}
// Compute DCG for group 'gidx' // Compute DCG for the item at 'idx'
__device__ __forceinline__ float operator()(uint32_t gidx) const { __device__ __forceinline__ float operator()(uint32_t idx) const {
uint32_t group_begin = dgroups_[gidx]; return ComputeItemDCGWeight(dsorted_labels_[idx], idx - dgroups_[dgidxs_[idx]]);
uint32_t group_end = dgroups_[gidx + 1];
uint32_t group_size = group_end - group_begin;
return ComputeGroupDCGWeight(&dsorted_labels_[group_begin], group_size);
} }
private: private:
const float *dsorted_labels_{nullptr}; // Labels sorted within a group const float *dsorted_labels_{nullptr}; // Labels sorted within a group
const uint32_t *dgroups_{nullptr}; // The group indices - where each group begins and ends const uint32_t *dgroups_{nullptr}; // The group indices - where each group begins and ends
const uint32_t *dgidxs_{nullptr}; // The group each items belongs to
}; };
// Type containing device pointers that can be cheaply copied on the kernel // Type containing device pointers that can be cheaply copied on the kernel
class NDCGLambdaWeightMultiplier { class NDCGLambdaWeightMultiplier : public BaseLambdaWeightMultiplier {
public: public:
NDCGLambdaWeightMultiplier(const float *dsorted_labels, NDCGLambdaWeightMultiplier(const SegmentSorter<float> &segment_label_sorter,
const uint32_t *dorig_pos, const NDCGLambdaWeightComputer &lwc)
const uint32_t *dgroups, : BaseLambdaWeightMultiplier(segment_label_sorter, lwc.GetPredictionSorter()),
const float *dgroup_dcg_ptr, dgroup_dcg_ptr_(lwc.GetGroupDcgs().data().get()) {}
uint32_t *dindexable_sorted_preds_pos_ptr)
: dsorted_labels_(dsorted_labels),
dorig_pos_(dorig_pos),
dgroups_(dgroups),
dgroup_dcg_ptr_(dgroup_dcg_ptr),
dindexable_sorted_preds_pos_ptr_(dindexable_sorted_preds_pos_ptr) {}
// Adjust the items weight by this value // Adjust the items weight by this value
__device__ __forceinline__ bst_float GetWeight(uint32_t gidx, int pidx, int nidx) const { __device__ __forceinline__ bst_float GetWeight(uint32_t gidx, int pidx, int nidx) const {
@ -341,68 +412,56 @@ struct NDCGLambdaWeightComputer {
uint32_t group_begin = dgroups_[gidx]; uint32_t group_begin = dgroups_[gidx];
auto ppred_idx = dorig_pos_[pidx]; auto pos_lab_orig_posn = dorig_pos_[pidx];
auto npred_idx = dorig_pos_[nidx]; auto neg_lab_orig_posn = dorig_pos_[nidx];
KERNEL_CHECK(ppred_idx != npred_idx); KERNEL_CHECK(pos_lab_orig_posn != neg_lab_orig_posn);
// Note: the label positive and negative indices are relative to the entire dataset. // Note: the label positive and negative indices are relative to the entire dataset.
// Hence, scale them back to an index within the group // Hence, scale them back to an index within the group
ppred_idx = dindexable_sorted_preds_pos_ptr_[ppred_idx] - group_begin; auto pos_pred_pos = dindexable_sorted_preds_pos_ptr_[pos_lab_orig_posn] - group_begin;
npred_idx = dindexable_sorted_preds_pos_ptr_[npred_idx] - group_begin; auto neg_pred_pos = dindexable_sorted_preds_pos_ptr_[neg_lab_orig_posn] - group_begin;
return NDCGLambdaWeightComputer::ComputeDeltaWeight( return NDCGLambdaWeightComputer::ComputeDeltaWeight(
ppred_idx, npred_idx, pos_pred_pos, neg_pred_pos,
static_cast<int>(dsorted_labels_[pidx]), static_cast<int>(dsorted_labels_[nidx]), static_cast<int>(dsorted_labels_[pidx]), static_cast<int>(dsorted_labels_[nidx]),
dgroup_dcg_ptr_[gidx]); dgroup_dcg_ptr_[gidx]);
} }
private: private:
const float *dsorted_labels_{nullptr}; // Labels sorted within a group
const uint32_t *dorig_pos_{nullptr}; // Original indices of the labels before they are sorted
const uint32_t *dgroups_{nullptr}; // The group indices
const float *dgroup_dcg_ptr_{nullptr}; // Start address of the group DCG values const float *dgroup_dcg_ptr_{nullptr}; // Start address of the group DCG values
// Where can a prediction for a label be found in the original array, when they are sorted
uint32_t *dindexable_sorted_preds_pos_ptr_{nullptr};
}; };
NDCGLambdaWeightComputer(const bst_float *dpreds, NDCGLambdaWeightComputer(const bst_float *dpreds,
uint32_t pred_size, const bst_float *dlabels,
const SegmentSorter<float> &segment_label_sorter) const SegmentSorter<float> &segment_label_sorter)
: dgroup_dcg_(segment_label_sorter.NumGroups()), : IndexablePredictionSorter(dpreds, segment_label_sorter),
dindexable_sorted_preds_pos_(pred_size), dgroup_dcg_(segment_label_sorter.GetNumGroups(), 0.0f),
weight_multiplier_(segment_label_sorter.Items(), weight_multiplier_(segment_label_sorter, *this) {
segment_label_sorter.OriginalPositions(), const auto &group_segments = segment_label_sorter.GetGroupSegments();
segment_label_sorter.GroupIndices(),
dgroup_dcg_.data().get(),
dindexable_sorted_preds_pos_.data().get()) {
// Sort the predictions first and get the sorted position
SegmentSorter<float> segment_prediction_sorter;
segment_prediction_sorter.SortItems(dpreds, pred_size, segment_label_sorter.GroupSegments());
this->CreateIndexableSortedPredictionPositions(segment_prediction_sorter.OriginalPositions()); // Compute each elements DCG values and reduce them across groups concurrently.
auto end_range =
// Compute each group's DCG concurrently thrust::reduce_by_key(group_segments.begin(), group_segments.end(),
// Set the values to be the group indices first so that the predicate knows which thrust::make_transform_iterator(
// group it is dealing with // The indices need not be sequential within a group, as we care only
thrust::sequence(dgroup_dcg_.begin(), dgroup_dcg_.end()); // about the sum of items DCG values within a group
segment_label_sorter.GetOriginalPositions().begin(),
// TODO(sriramch): parallelize across all elements, if possible ComputeItemDCG(segment_label_sorter.GetItemsPtr(),
// Transform each group - the predictate computes the group's DCG segment_label_sorter.GetGroupsPtr(),
thrust::transform(dgroup_dcg_.begin(), dgroup_dcg_.end(), group_segments.data().get())),
dgroup_dcg_.begin(), thrust::make_discard_iterator(), // We don't care for the group indices
ComputeGroupDCG(segment_label_sorter.Items(), dgroup_dcg_.begin()); // Sum of the item's DCG values in the group
segment_label_sorter.GroupIndices())); CHECK(end_range.second - dgroup_dcg_.begin() == dgroup_dcg_.size());
} }
inline NDCGLambdaWeightMultiplier GetWeightMultiplier() const { return weight_multiplier_; } inline const dh::caching_device_vector<float> &GetGroupDcgs() const {
inline const dh::caching_device_vector<uint32_t> &GetSortedPredPos() const { return dgroup_dcg_;
return dindexable_sorted_preds_pos_; }
inline const NDCGLambdaWeightMultiplier GetWeightMultiplier() const {
return weight_multiplier_;
} }
#endif #endif
// Stopgap method - will be removed when we support other type of ranking - map
// on GPU later
inline static bool SupportOnGPU() { return true; }
static void GetLambdaWeight(const std::vector<ListEntry> &sorted_list, static void GetLambdaWeight(const std::vector<ListEntry> &sorted_list,
std::vector<LambdaPair> *io_pairs) { std::vector<LambdaPair> *io_pairs) {
std::vector<LambdaPair> &pairs = *io_pairs; std::vector<LambdaPair> &pairs = *io_pairs;
@ -434,29 +493,31 @@ struct NDCGLambdaWeightComputer {
return "rank:ndcg"; return "rank:ndcg";
} }
private: inline static bst_float ComputeGroupDCGWeight(const float *sorted_labels, uint32_t size) {
XGBOOST_DEVICE inline static bst_float ComputeGroupDCGWeight(const float *sorted_labels,
uint32_t size) {
double sumdcg = 0.0; double sumdcg = 0.0;
for (uint32_t i = 0; i < size; ++i) { for (uint32_t i = 0; i < size; ++i) {
const auto rel = static_cast<unsigned>(sorted_labels[i]); sumdcg += ComputeItemDCGWeight(sorted_labels[i], i);
if (rel != 0) {
sumdcg += ((1 << rel) - 1) / std::log2(static_cast<bst_float>(i + 2));
}
} }
return static_cast<bst_float>(sumdcg); return static_cast<bst_float>(sumdcg);
} }
private:
XGBOOST_DEVICE inline static bst_float ComputeItemDCGWeight(unsigned label, uint32_t idx) {
return (label != 0) ? (((1 << label) - 1) / std::log2(static_cast<bst_float>(idx + 2))) : 0;
}
// Compute the weight adjustment for an item within a group: // Compute the weight adjustment for an item within a group:
// ppred_idx => Where does the positive label live, had the list been sorted by prediction // pos_pred_pos => Where does the positive label live, had the list been sorted by prediction
// npred_idx => Where does the negative label live, had the list been sorted by prediction // neg_pred_pos => Where does the negative label live, had the list been sorted by prediction
// pos_label => positive label value from sorted label list // pos_label => positive label value from sorted label list
// neg_label => negative label value from sorted label list // neg_label => negative label value from sorted label list
XGBOOST_DEVICE inline static bst_float ComputeDeltaWeight(uint32_t ppred_idx, uint32_t npred_idx, XGBOOST_DEVICE inline static bst_float ComputeDeltaWeight(uint32_t pos_pred_pos,
uint32_t neg_pred_pos,
int pos_label, int neg_label, int pos_label, int neg_label,
float idcg) { float idcg) {
float pos_loginv = 1.0f / std::log2(ppred_idx + 2.0f); float pos_loginv = 1.0f / std::log2(pos_pred_pos + 2.0f);
float neg_loginv = 1.0f / std::log2(npred_idx + 2.0f); float neg_loginv = 1.0f / std::log2(neg_pred_pos + 2.0f);
bst_float original = ((1 << pos_label) - 1) * pos_loginv + ((1 << neg_label) - 1) * neg_loginv; bst_float original = ((1 << pos_label) - 1) * pos_loginv + ((1 << neg_label) - 1) * neg_loginv;
float changed = ((1 << neg_label) - 1) * pos_loginv + ((1 << pos_label) - 1) * neg_loginv; float changed = ((1 << neg_label) - 1) * pos_loginv + ((1 << pos_label) - 1) * neg_loginv;
bst_float delta = (original - changed) * (1.0f / idcg); bst_float delta = (original - changed) * (1.0f / idcg);
@ -465,105 +526,103 @@ struct NDCGLambdaWeightComputer {
} }
#if defined(__CUDACC__) #if defined(__CUDACC__)
// While computing the weight that needs to be adjusted by this ranking objective, we need
// to figure out where positive and negative labels chosen earlier exists, if the group
// were to be sorted by its predictions. To accommodate this, we employ the following algorithm.
// For a given group, let's assume the following:
// labels: 1 5 9 2 4 8 0 7 6 3
// predictions: 1 9 0 8 2 7 3 6 5 4
// position: 0 1 2 3 4 5 6 7 8 9
//
// After label sort:
// labels: 9 8 7 6 5 4 3 2 1 0
// position: 2 5 7 8 1 4 9 3 0 6
//
// After prediction sort:
// predictions: 9 8 7 6 5 4 3 2 1 0
// position: 1 3 5 7 8 9 6 4 0 2
//
// If a sorted label at position 'x' is chosen, then we need to find out where the prediction
// for this label 'x' exists, if the group were to be sorted by predictions.
// We first take the sorted prediction positions:
// position: 1 3 5 7 8 9 6 4 0 2
// at indices: 0 1 2 3 4 5 6 7 8 9
//
// We create a sorted prediction positional array, such that value at position 'x' gives
// us the position in the sorted prediction array where its related prediction lies.
// dindexable_sorted_preds_pos_ptr_: 8 0 9 1 7 2 6 3 4 5
// at indices: 0 1 2 3 4 5 6 7 8 9
// Basically, swap the previous 2 arrays, sort the indices and reorder positions
// for an O(1) lookup using the position where the sorted label exists
void CreateIndexableSortedPredictionPositions(const uint32_t *dsorted_preds_pos) {
dh::caching_device_vector<uint32_t> indices(dindexable_sorted_preds_pos_.size());
thrust::sequence(indices.begin(), indices.end());
thrust::scatter(indices.begin(), indices.end(), // Rearrange indices...
thrust::device_ptr<const uint32_t>(dsorted_preds_pos), // ...based on this map
dindexable_sorted_preds_pos_.begin()); // Write results into this
}
dh::caching_device_vector<float> dgroup_dcg_; dh::caching_device_vector<float> dgroup_dcg_;
// Where can a prediction for a label be found in the original array, when they are sorted // This computes the adjustment to the weight
dh::caching_device_vector<uint32_t> dindexable_sorted_preds_pos_; const NDCGLambdaWeightMultiplier weight_multiplier_;
NDCGLambdaWeightMultiplier weight_multiplier_; // This computes the adjustment to the weight
#endif #endif
}; };
struct MAPLambdaWeightComputer { class MAPLambdaWeightComputer
private: #if defined(__CUDACC__)
: public IndexablePredictionSorter
#endif
{
public:
struct MAPStats { struct MAPStats {
/*! \brief the accumulated precision */ /*! \brief the accumulated precision */
float ap_acc; float ap_acc{0.0f};
/*! /*!
* \brief the accumulated precision, * \brief the accumulated precision,
* assuming a positive instance is missing * assuming a positive instance is missing
*/ */
float ap_acc_miss; float ap_acc_miss{0.0f};
/*! /*!
* \brief the accumulated precision, * \brief the accumulated precision,
* assuming that one more positive instance is inserted ahead * assuming that one more positive instance is inserted ahead
*/ */
float ap_acc_add; float ap_acc_add{0.0f};
/* \brief the accumulated positive instance count */ /* \brief the accumulated positive instance count */
float hits; float hits{0.0f};
MAPStats() = default;
MAPStats(float ap_acc, float ap_acc_miss, float ap_acc_add, float hits) XGBOOST_DEVICE MAPStats() {} // NOLINT
: ap_acc(ap_acc), ap_acc_miss(ap_acc_miss), ap_acc_add(ap_acc_add), hits(hits) {} XGBOOST_DEVICE MAPStats(float ap_acc, float ap_acc_miss, float ap_acc_add, float hits)
: ap_acc(ap_acc), ap_acc_miss(ap_acc_miss), ap_acc_add(ap_acc_add), hits(hits) {}
// For prefix scan
XGBOOST_DEVICE MAPStats operator +(const MAPStats &v1) const {
return {ap_acc + v1.ap_acc, ap_acc_miss + v1.ap_acc_miss,
ap_acc_add + v1.ap_acc_add, hits + v1.hits};
}
// For test purposes - compare for equality
XGBOOST_DEVICE bool operator ==(const MAPStats &rhs) const {
return ap_acc == rhs.ap_acc && ap_acc_miss == rhs.ap_acc_miss &&
ap_acc_add == rhs.ap_acc_add && hits == rhs.hits;
}
}; };
private:
template <typename T>
XGBOOST_DEVICE inline static void Swap(T &v0, T &v1) {
#if defined(__CUDACC__)
thrust::swap(v0, v1);
#else
std::swap(v0, v1);
#endif
}
/*! /*!
* \brief Obtain the delta MAP if trying to switch the positions of instances in index1 or index2 * \brief Obtain the delta MAP by trying to switch the positions of labels in pos_pred_pos or
* in sorted triples * neg_pred_pos when sorted by predictions
* \param sorted_list the list containing entry information * \param pos_pred_pos positive label's prediction value position when the groups prediction
* \param index1,index2 the instances switched * values are sorted
* \param map_stats a vector containing the accumulated precisions for each position in a list * \param neg_pred_pos negative label's prediction value position when the groups prediction
* values are sorted
* \param pos_label, neg_label the chosen positive and negative labels
* \param p_map_stats a vector containing the accumulated precisions for each position in a list
* \param map_stats_size size of the accumulated precisions vector
*/ */
inline static bst_float GetLambdaMAP(const std::vector<ListEntry> &sorted_list, XGBOOST_DEVICE inline static bst_float GetLambdaMAP(
int index1, int index2, int pos_pred_pos, int neg_pred_pos,
std::vector<MAPStats> *p_map_stats) { bst_float pos_label, bst_float neg_label,
std::vector<MAPStats> &map_stats = *p_map_stats; const MAPStats *p_map_stats, uint32_t map_stats_size) {
if (index1 == index2 || map_stats[map_stats.size() - 1].hits == 0) { if (pos_pred_pos == neg_pred_pos || p_map_stats[map_stats_size - 1].hits == 0) {
return 0.0f; return 0.0f;
} }
if (index1 > index2) std::swap(index1, index2); if (pos_pred_pos > neg_pred_pos) {
bst_float original = map_stats[index2].ap_acc; Swap(pos_pred_pos, neg_pred_pos);
if (index1 != 0) original -= map_stats[index1 - 1].ap_acc; Swap(pos_label, neg_label);
}
bst_float original = p_map_stats[neg_pred_pos].ap_acc;
if (pos_pred_pos != 0) original -= p_map_stats[pos_pred_pos - 1].ap_acc;
bst_float changed = 0; bst_float changed = 0;
bst_float label1 = sorted_list[index1].label > 0.0f ? 1.0f : 0.0f; bst_float label1 = pos_label > 0.0f ? 1.0f : 0.0f;
bst_float label2 = sorted_list[index2].label > 0.0f ? 1.0f : 0.0f; bst_float label2 = neg_label > 0.0f ? 1.0f : 0.0f;
if (label1 == label2) { if (label1 == label2) {
return 0.0; return 0.0;
} else if (label1 < label2) { } else if (label1 < label2) {
changed += map_stats[index2 - 1].ap_acc_add - map_stats[index1].ap_acc_add; changed += p_map_stats[neg_pred_pos - 1].ap_acc_add - p_map_stats[pos_pred_pos].ap_acc_add;
changed += (map_stats[index1].hits + 1.0f) / (index1 + 1); changed += (p_map_stats[pos_pred_pos].hits + 1.0f) / (pos_pred_pos + 1);
} else { } else {
changed += map_stats[index2 - 1].ap_acc_miss - map_stats[index1].ap_acc_miss; changed += p_map_stats[neg_pred_pos - 1].ap_acc_miss - p_map_stats[pos_pred_pos].ap_acc_miss;
changed += map_stats[index2].hits / (index2 + 1); changed += p_map_stats[neg_pred_pos].hits / (neg_pred_pos + 1);
} }
bst_float ans = (changed - original) / (map_stats[map_stats.size() - 1].hits); bst_float ans = (changed - original) / (p_map_stats[map_stats_size - 1].hits);
if (ans < 0) ans = -ans; if (ans < 0) ans = -ans;
return ans; return ans;
} }
public:
/* /*
* \brief obtain preprocessing results for calculating delta MAP * \brief obtain preprocessing results for calculating delta MAP
* \param sorted_list the list containing entry information * \param sorted_list the list containing entry information
@ -585,11 +644,6 @@ struct MAPLambdaWeightComputer {
} }
} }
public:
// Stopgap method - will be removed when we support other type of ranking - map
// on GPU later
inline static bool SupportOnGPU() { return false; }
static char const* Name() { static char const* Name() {
return "rank:map"; return "rank:map";
} }
@ -601,26 +655,132 @@ struct MAPLambdaWeightComputer {
GetMAPStats(sorted_list, &map_stats); GetMAPStats(sorted_list, &map_stats);
for (auto & pair : pairs) { for (auto & pair : pairs) {
pair.weight *= pair.weight *=
GetLambdaMAP(sorted_list, pair.pos_index, GetLambdaMAP(pair.pos_index, pair.neg_index,
pair.neg_index, &map_stats); sorted_list[pair.pos_index].label, sorted_list[pair.neg_index].label,
&map_stats[0], map_stats.size());
} }
} }
#if defined(__CUDACC__) #if defined(__CUDACC__)
MAPLambdaWeightComputer(const bst_float *dpreds, MAPLambdaWeightComputer(const bst_float *dpreds,
uint32_t pred_size, const bst_float *dlabels,
const SegmentSorter<float> &segment_label_sorter) {} const SegmentSorter<float> &segment_label_sorter)
: IndexablePredictionSorter(dpreds, segment_label_sorter),
dmap_stats_(segment_label_sorter.GetNumItems(), MAPStats()),
weight_multiplier_(segment_label_sorter, *this) {
this->CreateMAPStats(dlabels, segment_label_sorter);
}
void CreateMAPStats(const bst_float *dlabels,
const SegmentSorter<float> &segment_label_sorter) {
// For each group, go through the sorted prediction positions, and look up its corresponding
// label from the unsorted labels (from the original label list)
// For each item in the group, compute its MAP stats.
// Interleave the computation of map stats amongst different groups.
// First, determine postive labels in the dataset individually
auto nitems = segment_label_sorter.GetNumItems();
dh::caching_device_vector<uint32_t> dhits(nitems, 0);
// Original positions of the predictions after they have been sorted
const uint32_t *pred_original_pos = this->GetPredictionSorter().GetOriginalPositionsPtr();
// Unsorted labels
const float *unsorted_labels = dlabels;
auto DeterminePositiveLabelLambda = [=] __device__(uint32_t idx) {
return (unsorted_labels[pred_original_pos[idx]] > 0.0f) ? 1 : 0;
}; // NOLINT
thrust::transform(thrust::make_counting_iterator(static_cast<uint32_t>(0)),
thrust::make_counting_iterator(nitems),
dhits.begin(),
DeterminePositiveLabelLambda);
// Allocator to be used by sort for managing space overhead while performing prefix scans
dh::XGBCachingDeviceAllocator<char> alloc;
// Next, prefix scan the positive labels that are segmented to accumulate them.
// This is required for computing the accumulated precisions
const auto &group_segments = segment_label_sorter.GetGroupSegments();
// Data segmented into different groups...
thrust::inclusive_scan_by_key(thrust::cuda::par(alloc),
group_segments.begin(), group_segments.end(),
dhits.begin(), // Input value
dhits.begin()); // In-place scan
// Compute accumulated precisions for each item, assuming positive and
// negative instances are missing.
// But first, compute individual item precisions
const auto *dgidx_arr = group_segments.data().get();
const auto *dhits_arr = dhits.data().get();
// Group info on device
const uint32_t *dgroups = segment_label_sorter.GetGroupsPtr();
uint32_t ngroups = segment_label_sorter.GetNumGroups();
auto ComputeItemPrecisionLambda = [=] __device__(uint32_t idx) {
if (unsorted_labels[pred_original_pos[idx]] > 0.0f) {
auto idx_within_group = (idx - dgroups[dgidx_arr[idx]]) + 1;
return MAPStats(static_cast<float>(dhits_arr[idx]) / idx_within_group,
static_cast<float>(dhits_arr[idx] - 1) / idx_within_group,
static_cast<float>(dhits_arr[idx] + 1) / idx_within_group,
1.0f);
}
return MAPStats();
}; // NOLINT
thrust::transform(thrust::make_counting_iterator(static_cast<uint32_t>(0)),
thrust::make_counting_iterator(nitems),
this->dmap_stats_.begin(),
ComputeItemPrecisionLambda);
// Lastly, compute the accumulated precisions for all the items segmented by groups.
// The precisions are accumulated within each group
thrust::inclusive_scan_by_key(thrust::cuda::par(alloc),
group_segments.begin(), group_segments.end(),
this->dmap_stats_.begin(), // Input map stats
this->dmap_stats_.begin()); // In-place scan and output here
}
inline const dh::caching_device_vector<MAPStats> &GetMapStats() const {
return dmap_stats_;
}
// Type containing device pointers that can be cheaply copied on the kernel
class MAPLambdaWeightMultiplier : public BaseLambdaWeightMultiplier {
public:
MAPLambdaWeightMultiplier(const SegmentSorter<float> &segment_label_sorter,
const MAPLambdaWeightComputer &lwc)
: BaseLambdaWeightMultiplier(segment_label_sorter, lwc.GetPredictionSorter()),
dmap_stats_ptr_(lwc.GetMapStats().data().get()) {}
struct MAPLambdaWeightMultiplier {
// Adjust the items weight by this value // Adjust the items weight by this value
__device__ __forceinline__ bst_float GetWeight(uint32_t gidx, int pidx, int nidx) const { __device__ __forceinline__ bst_float GetWeight(uint32_t gidx, int pidx, int nidx) const {
return 1.0f; uint32_t group_begin = dgroups_[gidx];
uint32_t group_end = dgroups_[gidx + 1];
auto pos_lab_orig_posn = dorig_pos_[pidx];
auto neg_lab_orig_posn = dorig_pos_[nidx];
KERNEL_CHECK(pos_lab_orig_posn != neg_lab_orig_posn);
// Note: the label positive and negative indices are relative to the entire dataset.
// Hence, scale them back to an index within the group
auto pos_pred_pos = dindexable_sorted_preds_pos_ptr_[pos_lab_orig_posn] - group_begin;
auto neg_pred_pos = dindexable_sorted_preds_pos_ptr_[neg_lab_orig_posn] - group_begin;
return MAPLambdaWeightComputer::GetLambdaMAP(
pos_pred_pos, neg_pred_pos,
dsorted_labels_[pidx], dsorted_labels_[nidx],
&dmap_stats_ptr_[group_begin], group_end - group_begin);
} }
private:
const MAPStats *dmap_stats_ptr_{nullptr}; // Start address of the map stats for every sorted
// prediction value
}; };
inline MAPLambdaWeightMultiplier GetWeightMultiplier() const { inline const MAPLambdaWeightMultiplier GetWeightMultiplier() const { return weight_multiplier_; }
return {};
} private:
dh::caching_device_vector<MAPStats> dmap_stats_;
// This computes the adjustment to the weight
const MAPLambdaWeightMultiplier weight_multiplier_;
#endif #endif
}; };
@ -641,30 +801,31 @@ class SortedLabelList : SegmentSorter<float> {
// This kernel can only run *after* the kernel in sort is completed, as they // This kernel can only run *after* the kernel in sort is completed, as they
// use the default stream // use the default stream
template <typename LambdaWeightComputerT> template <typename LambdaWeightComputerT>
void ComputeGradients(const bst_float *dpreds, void ComputeGradients(const bst_float *dpreds, // Unsorted predictions
const bst_float *dlabels, // Unsorted labels
const HostDeviceVector<bst_float> &weights, const HostDeviceVector<bst_float> &weights,
int iter, int iter,
GradientPair *out_gpair, GradientPair *out_gpair,
float weight_normalization_factor) { float weight_normalization_factor) {
// Group info on device // Group info on device
const uint32_t *dgroups = this->GroupIndices(); const uint32_t *dgroups = this->GetGroupsPtr();
uint32_t ngroups = this->NumGroups() + 1; uint32_t ngroups = this->GetNumGroups() + 1;
uint32_t total_items = this->NumItems(); uint32_t total_items = this->GetNumItems();
uint32_t niter = param_.num_pairsample * total_items; uint32_t niter = param_.num_pairsample * total_items;
float fix_list_weight = param_.fix_list_weight; float fix_list_weight = param_.fix_list_weight;
const uint32_t *original_pos = this->OriginalPositions(); const uint32_t *original_pos = this->GetOriginalPositionsPtr();
uint32_t num_weights = weights.Size(); uint32_t num_weights = weights.Size();
auto dweights = num_weights ? weights.ConstDevicePointer() : nullptr; auto dweights = num_weights ? weights.ConstDevicePointer() : nullptr;
const bst_float *sorted_labels = this->Items(); const bst_float *sorted_labels = this->GetItemsPtr();
// This is used to adjust the weight of different elements based on the different ranking // This is used to adjust the weight of different elements based on the different ranking
// objective function policies // objective function policies
LambdaWeightComputerT weight_computer(dpreds, total_items, *this); LambdaWeightComputerT weight_computer(dpreds, dlabels, *this);
auto wmultiplier = weight_computer.GetWeightMultiplier(); auto wmultiplier = weight_computer.GetWeightMultiplier();
int device_id = -1; int device_id = -1;
@ -762,10 +923,9 @@ class LambdaRankObj : public ObjFunction {
<< "group structure not consistent with #rows"; << "group structure not consistent with #rows";
#if defined(__CUDACC__) #if defined(__CUDACC__)
// For now, we only support pairwise ranking computation on GPU.
// Check if we have a GPU assignment; else, revert back to CPU // Check if we have a GPU assignment; else, revert back to CPU
auto device = tparam_->gpu_id; auto device = tparam_->gpu_id;
if (device >= 0 && LambdaWeightComputerT::SupportOnGPU()) { if (device >= 0) {
ComputeGradientsOnGPU(preds, info, iter, out_gpair, gptr); ComputeGradientsOnGPU(preds, info, iter, out_gpair, gptr);
} else { } else {
// Revert back to CPU // Revert back to CPU
@ -809,7 +969,7 @@ class LambdaRankObj : public ObjFunction {
int iter, int iter,
HostDeviceVector<GradientPair>* out_gpair, HostDeviceVector<GradientPair>* out_gpair,
const std::vector<unsigned> &gptr) { const std::vector<unsigned> &gptr) {
LOG(DEBUG) << "Computing pairwise gradients on CPU."; LOG(DEBUG) << "Computing " << LambdaWeightComputerT::Name() << " gradients on CPU.";
bst_float weight_normalization_factor = ComputeWeightNormalizationFactor(info, gptr); bst_float weight_normalization_factor = ComputeWeightNormalizationFactor(info, gptr);
@ -893,7 +1053,7 @@ class LambdaRankObj : public ObjFunction {
int iter, int iter,
HostDeviceVector<GradientPair>* out_gpair, HostDeviceVector<GradientPair>* out_gpair,
const std::vector<unsigned> &gptr) { const std::vector<unsigned> &gptr) {
LOG(DEBUG) << "Computing pairwise gradients on GPU."; LOG(DEBUG) << "Computing " << LambdaWeightComputerT::Name() << " gradients on GPU.";
auto device = tparam_->gpu_id; auto device = tparam_->gpu_id;
dh::safe_cuda(cudaSetDevice(device)); dh::safe_cuda(cudaSetDevice(device));
@ -910,6 +1070,7 @@ class LambdaRankObj : public ObjFunction {
auto d_preds = preds.ConstDevicePointer(); auto d_preds = preds.ConstDevicePointer();
auto d_gpair = out_gpair->DevicePointer(); auto d_gpair = out_gpair->DevicePointer();
auto d_labels = info.labels_.ConstDevicePointer();
SortedLabelList slist(param_); SortedLabelList slist(param_);
@ -921,7 +1082,7 @@ class LambdaRankObj : public ObjFunction {
// Finally, compute the gradients // Finally, compute the gradients
slist.ComputeGradients<LambdaWeightComputerT> slist.ComputeGradients<LambdaWeightComputerT>
(d_preds, info.weights_, iter, d_gpair, weight_normalization_factor); (d_preds, d_labels, info.weights_, iter, d_gpair, weight_normalization_factor);
} }
#endif #endif

View File

@ -84,3 +84,81 @@ void TestAllocator() {
TEST(bulkAllocator, Test) { TEST(bulkAllocator, Test) {
TestAllocator(); TestAllocator();
} }
template <typename T, typename Comp = thrust::less<T>>
void TestUpperBoundImpl(const std::vector<T> &vec, T val_to_find,
const Comp &comp = Comp()) {
EXPECT_EQ(dh::UpperBound(vec.data(), vec.size(), val_to_find, comp),
std::upper_bound(vec.begin(), vec.end(), val_to_find, comp) - vec.begin());
}
template <typename T, typename Comp = thrust::less<T>>
void TestLowerBoundImpl(const std::vector<T> &vec, T val_to_find,
const Comp &comp = Comp()) {
EXPECT_EQ(dh::LowerBound(vec.data(), vec.size(), val_to_find, comp),
std::lower_bound(vec.begin(), vec.end(), val_to_find, comp) - vec.begin());
}
TEST(UpperBound, DataAscending) {
std::vector<int> hvec{0, 3, 5, 5, 7, 8, 9, 10, 10};
// Test boundary conditions
TestUpperBoundImpl(hvec, hvec.front()); // Result 1
TestUpperBoundImpl(hvec, hvec.front() - 1); // Result 0
TestUpperBoundImpl(hvec, hvec.back() + 1); // Result hvec.size()
TestUpperBoundImpl(hvec, hvec.back()); // Result hvec.size()
// Test other values - both missing and present
TestUpperBoundImpl(hvec, 3); // Result 2
TestUpperBoundImpl(hvec, 4); // Result 2
TestUpperBoundImpl(hvec, 5); // Result 4
}
TEST(UpperBound, DataDescending) {
std::vector<int> hvec{10, 10, 9, 8, 7, 5, 5, 3, 0, 0};
const auto &comparator = thrust::greater<int>();
// Test boundary conditions
TestUpperBoundImpl(hvec, hvec.front(), comparator); // Result 2
TestUpperBoundImpl(hvec, hvec.front() + 1, comparator); // Result 0
TestUpperBoundImpl(hvec, hvec.back(), comparator); // Result hvec.size()
TestUpperBoundImpl(hvec, hvec.back() - 1, comparator); // Result hvec.size()
// Test other values - both missing and present
TestUpperBoundImpl(hvec, 9, comparator); // Result 3
TestUpperBoundImpl(hvec, 7, comparator); // Result 5
TestUpperBoundImpl(hvec, 4, comparator); // Result 7
TestUpperBoundImpl(hvec, 8, comparator); // Result 4
}
TEST(LowerBound, DataAscending) {
std::vector<int> hvec{0, 3, 5, 5, 7, 8, 9, 10, 10};
// Test boundary conditions
TestLowerBoundImpl(hvec, hvec.front()); // Result 0
TestLowerBoundImpl(hvec, hvec.front() - 1); // Result 0
TestLowerBoundImpl(hvec, hvec.back()); // Result 7
TestLowerBoundImpl(hvec, hvec.back() + 1); // Result hvec.size()
// Test other values - both missing and present
TestLowerBoundImpl(hvec, 3); // Result 1
TestLowerBoundImpl(hvec, 4); // Result 2
TestLowerBoundImpl(hvec, 5); // Result 2
}
TEST(LowerBound, DataDescending) {
std::vector<int> hvec{10, 10, 9, 8, 7, 5, 5, 3, 0, 0};
const auto &comparator = thrust::greater<int>();
// Test boundary conditions
TestLowerBoundImpl(hvec, hvec.front(), comparator); // Result 0
TestLowerBoundImpl(hvec, hvec.front() + 1, comparator); // Result 0
TestLowerBoundImpl(hvec, hvec.back(), comparator); // Result 8
TestLowerBoundImpl(hvec, hvec.back() - 1, comparator); // Result hvec.size()
// Test other values - both missing and present
TestLowerBoundImpl(hvec, 9, comparator); // Result 2
TestLowerBoundImpl(hvec, 7, comparator); // Result 4
TestLowerBoundImpl(hvec, 4, comparator); // Result 7
TestLowerBoundImpl(hvec, 8, comparator); // Result 3
}

View File

@ -105,4 +105,33 @@ TEST(Objective, DeclareUnifiedTest(NDCGRankingGPair)) {
ASSERT_NO_THROW(obj->DefaultEvalMetric()); ASSERT_NO_THROW(obj->DefaultEvalMetric());
} }
TEST(Objective, DeclareUnifiedTest(MAPRankingGPair)) {
std::vector<std::pair<std::string, std::string>> args;
xgboost::GenericParameter lparam = xgboost::CreateEmptyGenericParam(GPUIDX);
std::unique_ptr<xgboost::ObjFunction> obj {
xgboost::ObjFunction::Create("rank:map", &lparam)
};
obj->Configure(args);
CheckConfigReload(obj, "rank:map");
// Test with setting sample weight to second query group
CheckRankingObjFunction(obj,
{0, 0.1f, 0, 0.1f},
{0, 1, 0, 1},
{2.0f, 0.0f},
{0, 2, 4},
{0.95f, -0.95f, 0.0f, 0.0f},
{0.9975f, 0.9975f, 0.0f, 0.0f});
CheckRankingObjFunction(obj,
{0, 0.1f, 0, 0.1f},
{0, 1, 0, 1},
{1.0f, 1.0f},
{0, 2, 4},
{0.475f, -0.475f, 0.475f, -0.475f},
{0.4988f, 0.4988f, 0.4988f, 0.4988f});
ASSERT_NO_THROW(obj->DefaultEvalMetric());
}
} // namespace xgboost } // namespace xgboost

View File

@ -19,22 +19,22 @@ RankSegmentSorterTestImpl(const std::vector<uint32_t> &group_indices,
dh::device_vector<T> dlabels(hlabels); dh::device_vector<T> dlabels(hlabels);
seg_sorter.SortItems(dlabels.data().get(), dlabels.size(), group_indices, Comparator()); seg_sorter.SortItems(dlabels.data().get(), dlabels.size(), group_indices, Comparator());
EXPECT_EQ(seg_sorter.NumItems(), group_indices.back()); EXPECT_EQ(seg_sorter.GetNumItems(), group_indices.back());
EXPECT_EQ(seg_sorter.NumGroups(), group_indices.size() - 1); EXPECT_EQ(seg_sorter.GetNumGroups(), group_indices.size() - 1);
// Check the labels // Check the labels
dh::device_vector<T> sorted_dlabels(seg_sorter.NumItems()); dh::device_vector<T> sorted_dlabels(seg_sorter.GetNumItems());
sorted_dlabels.assign(thrust::device_ptr<const T>(seg_sorter.Items()), sorted_dlabels.assign(thrust::device_ptr<const T>(seg_sorter.GetItemsPtr()),
thrust::device_ptr<const T>(seg_sorter.Items()) thrust::device_ptr<const T>(seg_sorter.GetItemsPtr())
+ seg_sorter.NumItems()); + seg_sorter.GetNumItems());
thrust::host_vector<T> sorted_hlabels(sorted_dlabels); thrust::host_vector<T> sorted_hlabels(sorted_dlabels);
EXPECT_EQ(expected_sorted_hlabels, sorted_hlabels); EXPECT_EQ(expected_sorted_hlabels, sorted_hlabels);
// Check the indices // Check the indices
dh::device_vector<uint32_t> dorig_pos(seg_sorter.NumItems()); dh::device_vector<uint32_t> dorig_pos(seg_sorter.GetNumItems());
dorig_pos.assign(thrust::device_ptr<const uint32_t>(seg_sorter.OriginalPositions()), dorig_pos.assign(thrust::device_ptr<const uint32_t>(seg_sorter.GetOriginalPositionsPtr()),
thrust::device_ptr<const uint32_t>(seg_sorter.OriginalPositions()) thrust::device_ptr<const uint32_t>(seg_sorter.GetOriginalPositionsPtr())
+ seg_sorter.NumItems()); + seg_sorter.GetNumItems());
dh::device_vector<uint32_t> horig_pos(dorig_pos); dh::device_vector<uint32_t> horig_pos(dorig_pos);
EXPECT_EQ(expected_orig_pos, horig_pos); EXPECT_EQ(expected_orig_pos, horig_pos);
@ -125,11 +125,14 @@ TEST(Objective, RankItemCountOnRight) {
} }
TEST(Objective, NDCGLambdaWeightComputerTest) { TEST(Objective, NDCGLambdaWeightComputerTest) {
std::vector<float> hlabels = {3.1f, 1.2f, 2.3f, 4.4f, // Labels
7.8f, 5.01f, 6.96f,
10.3f, 8.7f, 11.4f, 9.45f, 11.4f};
dh::device_vector<bst_float> dlabels(hlabels);
auto segment_label_sorter = RankSegmentSorterTestImpl<float>( auto segment_label_sorter = RankSegmentSorterTestImpl<float>(
{0, 4, 7, 12}, // Groups {0, 4, 7, 12}, // Groups
{3.1f, 1.2f, 2.3f, 4.4f, // Labels hlabels,
7.8f, 5.01f, 6.96f,
10.3f, 8.7f, 11.4f, 9.45f, 11.4f},
{4.4f, 3.1f, 2.3f, 1.2f, // Expected sorted labels {4.4f, 3.1f, 2.3f, 1.2f, // Expected sorted labels
7.8f, 6.96f, 5.01f, 7.8f, 6.96f, 5.01f,
11.4f, 11.4f, 10.3f, 9.45f, 8.7f}, 11.4f, 11.4f, 10.3f, 9.45f, 8.7f},
@ -142,18 +145,114 @@ TEST(Objective, NDCGLambdaWeightComputerTest) {
-1.03f, -2.79f, -3.1f, -1.03f, -2.79f, -3.1f,
104.22f, 103.1f, -101.7f, 100.5f, 45.1f}; 104.22f, 103.1f, -101.7f, 100.5f, 45.1f};
dh::device_vector<bst_float> dpreds(hpreds); dh::device_vector<bst_float> dpreds(hpreds);
xgboost::obj::NDCGLambdaWeightComputer ndcg_lw_computer(dpreds.data().get(), xgboost::obj::NDCGLambdaWeightComputer ndcg_lw_computer(dpreds.data().get(),
dpreds.size(), dlabels.data().get(),
*segment_label_sorter); *segment_label_sorter);
// Where will the predictions move from its current position, if they were sorted // Where will the predictions move from its current position, if they were sorted
// descendingly? // descendingly?
auto dsorted_pred_pos = ndcg_lw_computer.GetSortedPredPos(); auto dsorted_pred_pos = ndcg_lw_computer.GetPredictionSorter().GetIndexableSortedPositions();
thrust::host_vector<uint32_t> hsorted_pred_pos(dsorted_pred_pos); thrust::host_vector<uint32_t> hsorted_pred_pos(dsorted_pred_pos);
std::vector<uint32_t> expected_sorted_pred_pos{2, 0, 1, 3, std::vector<uint32_t> expected_sorted_pred_pos{2, 0, 1, 3,
4, 5, 6, 4, 5, 6,
7, 8, 11, 9, 10}; 7, 8, 11, 9, 10};
EXPECT_EQ(expected_sorted_pred_pos, hsorted_pred_pos); EXPECT_EQ(expected_sorted_pred_pos, hsorted_pred_pos);
// Check group DCG values
thrust::host_vector<float> hgroup_dcgs(ndcg_lw_computer.GetGroupDcgs());
thrust::host_vector<uint32_t> hgroups(segment_label_sorter->GetGroups());
thrust::host_vector<float> hsorted_labels(segment_label_sorter->GetItems());
EXPECT_EQ(hgroup_dcgs.size(), segment_label_sorter->GetNumGroups());
for (auto i = 0; i < hgroup_dcgs.size(); ++i) {
// Compute group DCG value on CPU and compare
auto gbegin = hgroups[i];
auto gend = hgroups[i + 1];
EXPECT_NEAR(
hgroup_dcgs[i],
xgboost::obj::NDCGLambdaWeightComputer::ComputeGroupDCGWeight(&hsorted_labels[gbegin],
gend - gbegin),
0.01f);
}
}
TEST(Objective, IndexableSortedItemsTest) {
std::vector<float> hlabels = {3.1f, 1.2f, 2.3f, 4.4f, // Labels
7.8f, 5.01f, 6.96f,
10.3f, 8.7f, 11.4f, 9.45f, 11.4f};
dh::device_vector<bst_float> dlabels(hlabels);
auto segment_label_sorter = RankSegmentSorterTestImpl<float>(
{0, 4, 7, 12}, // Groups
hlabels,
{4.4f, 3.1f, 2.3f, 1.2f, // Expected sorted labels
7.8f, 6.96f, 5.01f,
11.4f, 11.4f, 10.3f, 9.45f, 8.7f},
{3, 0, 2, 1, // Expected original positions
4, 6, 5,
9, 11, 7, 10, 8});
segment_label_sorter->CreateIndexableSortedPositions();
thrust::host_vector<uint32_t> sorted_indices(segment_label_sorter->GetIndexableSortedPositions());
std::vector<uint32_t> expected_sorted_indices = {
1, 3, 2, 0,
4, 6, 5,
9, 11, 7, 10, 8};
EXPECT_EQ(expected_sorted_indices, sorted_indices);
}
TEST(Objective, ComputeAndCompareMAPStatsTest) {
std::vector<float> hlabels = {3.1f, 0.0f, 2.3f, 4.4f, // Labels
0.0f, 5.01f, 0.0f,
10.3f, 0.0f, 11.4f, 9.45f, 11.4f};
dh::device_vector<bst_float> dlabels(hlabels);
auto segment_label_sorter = RankSegmentSorterTestImpl<float>(
{0, 4, 7, 12}, // Groups
hlabels,
{4.4f, 3.1f, 2.3f, 0.0f, // Expected sorted labels
5.01f, 0.0f, 0.0f,
11.4f, 11.4f, 10.3f, 9.45f, 0.0f},
{3, 0, 2, 1, // Expected original positions
5, 4, 6,
9, 11, 7, 10, 8});
// Create MAP stats on the device first using the objective
std::vector<bst_float> hpreds{-9.78f, 24.367f, 0.908f, -11.47f,
-1.03f, -2.79f, -3.1f,
104.22f, 103.1f, -101.7f, 100.5f, 45.1f};
dh::device_vector<bst_float> dpreds(hpreds);
xgboost::obj::MAPLambdaWeightComputer map_lw_computer(dpreds.data().get(),
dlabels.data().get(),
*segment_label_sorter);
// Get the device MAP stats on host
thrust::host_vector<xgboost::obj::MAPLambdaWeightComputer::MAPStats> dmap_stats(
map_lw_computer.GetMapStats());
// Compute the MAP stats on host next to compare
thrust::host_vector<uint32_t> hgroups(segment_label_sorter->GetGroups());
for (auto i = 0; i < hgroups.size() - 1; ++i) {
auto gbegin = hgroups[i];
auto gend = hgroups[i + 1];
std::vector<xgboost::obj::ListEntry> lst_entry;
for (auto j = gbegin; j < gend; ++j) {
lst_entry.emplace_back(hpreds[j], hlabels[j], j);
}
std::stable_sort(lst_entry.begin(), lst_entry.end(), xgboost::obj::ListEntry::CmpPred);
// Compute the MAP stats with this list and compare with the ones computed on the device
std::vector<xgboost::obj::MAPLambdaWeightComputer::MAPStats> hmap_stats;
xgboost::obj::MAPLambdaWeightComputer::GetMAPStats(lst_entry, &hmap_stats);
for (auto j = gbegin; j < gend; ++j) {
EXPECT_EQ(dmap_stats[j].hits, hmap_stats[j - gbegin].hits);
EXPECT_NEAR(dmap_stats[j].ap_acc, hmap_stats[j - gbegin].ap_acc, 0.01f);
EXPECT_NEAR(dmap_stats[j].ap_acc_miss, hmap_stats[j - gbegin].ap_acc_miss, 0.01f);
EXPECT_NEAR(dmap_stats[j].ap_acc_add, hmap_stats[j - gbegin].ap_acc_add, 0.01f);
}
}
} }
} // namespace xgboost } // namespace xgboost

View File

@ -141,3 +141,21 @@ class TestRanking(unittest.TestCase):
Train an XGBoost ranking model with ndcg objective function and compare ndcg metric Train an XGBoost ranking model with ndcg objective function and compare ndcg metric
""" """
self.__test_training_with_rank_objective('rank:ndcg', 'ndcg') self.__test_training_with_rank_objective('rank:ndcg', 'ndcg')
def test_training_rank_map_map(self):
"""
Train an XGBoost ranking model with map objective function and compare map metric
"""
self.__test_training_with_rank_objective('rank:map', 'map')
def test_training_rank_map_auc(self):
"""
Train an XGBoost ranking model with map objective function and compare auc metric
"""
self.__test_training_with_rank_objective('rank:map', 'auc')
def test_training_rank_map_ndcg(self):
"""
Train an XGBoost ranking model with map objective function and compare ndcg metric
"""
self.__test_training_with_rank_objective('rank:map', 'ndcg')