Avoid dask test fixtures. (#5270)
* Fix Travis OSX timeout. * Fix classifier.
This commit is contained in:
parent
856b81c727
commit
ed0216642f
@ -10,18 +10,20 @@ if sys.platform.startswith("win"):
|
||||
pytestmark = pytest.mark.skipif(**tm.no_dask())
|
||||
|
||||
try:
|
||||
from distributed.utils_test import client, loop, cluster_fixture
|
||||
from distributed import LocalCluster, Client
|
||||
import dask.dataframe as dd
|
||||
import dask.array as da
|
||||
from xgboost.dask import DaskDMatrix
|
||||
except ImportError:
|
||||
client = None
|
||||
loop = None
|
||||
cluster_fixture = None
|
||||
pass
|
||||
LocalCluster = None
|
||||
Client = None
|
||||
dd = None
|
||||
da = None
|
||||
DaskDMatrix = None
|
||||
|
||||
kRows = 1000
|
||||
kCols = 10
|
||||
kWorkers = 5
|
||||
|
||||
|
||||
def generate_array():
|
||||
@ -31,7 +33,9 @@ def generate_array():
|
||||
return X, y
|
||||
|
||||
|
||||
def test_from_dask_dataframe(client):
|
||||
def test_from_dask_dataframe():
|
||||
with LocalCluster(n_workers=5) as cluster:
|
||||
with Client(cluster) as client:
|
||||
X, y = generate_array()
|
||||
|
||||
X = dd.from_dask_array(X)
|
||||
@ -51,11 +55,13 @@ def test_from_dask_dataframe(client):
|
||||
# evals_result is not supported in dask interface.
|
||||
xgb.dask.train(
|
||||
client, {}, dtrain, num_boost_round=2, evals_result={})
|
||||
|
||||
prediction = prediction.compute() # force prediction to be computed
|
||||
# force prediction to be computed
|
||||
prediction = prediction.compute()
|
||||
|
||||
|
||||
def test_from_dask_array(client):
|
||||
def test_from_dask_array():
|
||||
with LocalCluster(n_workers=5) as cluster:
|
||||
with Client(cluster) as client:
|
||||
X, y = generate_array()
|
||||
dtrain = DaskDMatrix(client, X, y)
|
||||
# results is {'booster': Booster, 'history': {...}}
|
||||
@ -65,11 +71,13 @@ def test_from_dask_array(client):
|
||||
assert prediction.shape[0] == kRows
|
||||
|
||||
assert isinstance(prediction, da.Array)
|
||||
|
||||
prediction = prediction.compute() # force prediction to be computed
|
||||
# force prediction to be computed
|
||||
prediction = prediction.compute()
|
||||
|
||||
|
||||
def test_regressor(client):
|
||||
def test_dask_regressor():
|
||||
with LocalCluster(n_workers=5) as cluster:
|
||||
with Client(cluster) as client:
|
||||
X, y = generate_array()
|
||||
regressor = xgb.dask.DaskXGBRegressor(verbosity=1, n_estimators=2)
|
||||
regressor.set_params(tree_method='hist')
|
||||
@ -89,10 +97,13 @@ def test_regressor(client):
|
||||
assert len(history['validation_0']['rmse']) == 2
|
||||
|
||||
|
||||
def test_classifier(client):
|
||||
def test_dask_classifier():
|
||||
with LocalCluster(n_workers=5) as cluster:
|
||||
with Client(cluster) as client:
|
||||
X, y = generate_array()
|
||||
y = (y * 10).astype(np.int32)
|
||||
classifier = xgb.dask.DaskXGBClassifier(verbosity=1, n_estimators=2)
|
||||
classifier = xgb.dask.DaskXGBClassifier(
|
||||
verbosity=1, n_estimators=2)
|
||||
classifier.client = client
|
||||
classifier.fit(X, y, eval_set=[(X, y)])
|
||||
prediction = classifier.predict(X)
|
||||
@ -164,11 +175,15 @@ def run_empty_dmatrix(client, parameters):
|
||||
# No test for Exact, as empty DMatrix handling are mostly for distributed
|
||||
# environment and Exact doesn't support it.
|
||||
|
||||
def test_empty_dmatrix_hist(client):
|
||||
def test_empty_dmatrix_hist():
|
||||
with LocalCluster(n_workers=5) as cluster:
|
||||
with Client(cluster) as client:
|
||||
parameters = {'tree_method': 'hist'}
|
||||
run_empty_dmatrix(client, parameters)
|
||||
|
||||
|
||||
def test_empty_dmatrix_approx(client):
|
||||
def test_empty_dmatrix_approx():
|
||||
with LocalCluster(n_workers=5) as cluster:
|
||||
with Client(cluster) as client:
|
||||
parameters = {'tree_method': 'approx'}
|
||||
run_empty_dmatrix(client, parameters)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user