[dask] Extend tree stats tests. (#7128)

* Add tests to GPU.
* Assert cover in children sums up to the parent.
This commit is contained in:
Jiaming Yuan 2021-07-27 12:22:13 +08:00 committed by GitHub
parent 778135f657
commit e88ac9cc54
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 54 additions and 18 deletions

View File

@ -28,6 +28,7 @@ from test_with_dask import _get_client_workers # noqa
from test_with_dask import generate_array # noqa from test_with_dask import generate_array # noqa
from test_with_dask import kCols as random_cols # noqa from test_with_dask import kCols as random_cols # noqa
from test_with_dask import suppress # noqa from test_with_dask import suppress # noqa
from test_with_dask import run_tree_stats # noqa
import testing as tm # noqa import testing as tm # noqa
@ -493,6 +494,17 @@ class TestDistributedGPU:
for rn, drn in zip(ranker_names, dranker_names): for rn, drn in zip(ranker_names, dranker_names):
assert rn == drn assert rn == drn
def test_tree_stats(self) -> None:
with LocalCUDACluster(n_workers=1) as cluster:
with Client(cluster) as client:
local = run_tree_stats(client, "gpu_hist")
with LocalCUDACluster(n_workers=2) as cluster:
with Client(cluster) as client:
distributed = run_tree_stats(client, "gpu_hist")
assert local == distributed
def run_quantile(self, name: str, local_cuda_cluster: LocalCUDACluster) -> None: def run_quantile(self, name: str, local_cuda_cluster: LocalCUDACluster) -> None:
if sys.platform.startswith("win"): if sys.platform.startswith("win"):
pytest.skip("Skipping dask tests on Windows") pytest.skip("Skipping dask tests on Windows")

View File

@ -1494,36 +1494,60 @@ def test_parallel_submits(client: "Client") -> None:
for i, cls in enumerate(classifiers): for i, cls in enumerate(classifiers):
assert cls.get_booster().num_boosted_rounds() == i + 1 assert cls.get_booster().num_boosted_rounds() == i + 1
@pytest.mark.parametrize("tree_method", ["hist", "approx"])
def test_hist_root_stats_with_different_num_worker(tree_method: str) -> None:
"""assert that different workers count dosn't affect summ statistic's on root"""
def dask_train(n_workers, X, y, num_obs, num_features):
cluster = LocalCluster(n_workers=n_workers)
client = Client(cluster)
chunk_size = num_obs/n_workers def run_tree_stats(client: Client, tree_method: str) -> str:
"""assert that different workers count dosn't affect summ statistic's on root"""
def dask_train(X, y, num_obs, num_features):
chunk_size = 100
X = da.from_array(X, chunks=(chunk_size, num_features)) X = da.from_array(X, chunks=(chunk_size, num_features))
y = da.from_array(y.reshape(num_obs,1), chunks=(chunk_size, 1)) y = da.from_array(y.reshape(num_obs, 1), chunks=(chunk_size, 1))
dtrain = xgb.dask.DaskDMatrix(client, X, y) dtrain = xgb.dask.DaskDMatrix(client, X, y)
output = xgb.dask.train( output = xgb.dask.train(
client, client,
{"verbosity": 0, "tree_method": tree_method, "objective": "reg:squarederror", 'max_depth': 2}, {
"verbosity": 0,
"tree_method": tree_method,
"objective": "reg:squarederror",
"max_depth": 3,
},
dtrain, dtrain,
num_boost_round=1 num_boost_round=1,
) )
dump_model = output['booster'].get_dump(with_stats=True) dump_model = output["booster"].get_dump(with_stats=True, dump_format="json")[0]
client.shutdown() return json.loads(dump_model)
return dump_model
num_obs = 1000 num_obs = 1000
num_features = 10 num_features = 10
X, y = make_regression(num_obs, num_features, random_state=777) X, y = make_regression(num_obs, num_features, random_state=777)
first_model = dask_train(1, X, y, num_obs, num_features)[0] model = dask_train(X, y, num_obs, num_features)
second_model = dask_train(2, X, y, num_obs, num_features)[0]
first_summ_stats = first_model[first_model.find('cover='):first_model.find('\n')] # asserts children have correct cover.
second_summ_stats = second_model[second_model.find('cover='):second_model.find('\n')] stack = [model]
assert first_summ_stats == second_summ_stats while stack:
node: dict = stack.pop()
if "leaf" in node.keys():
continue
cover = 0
for c in node["children"]:
cover += c["cover"]
stack.append(c)
assert cover == node["cover"]
return model["cover"]
@pytest.mark.parametrize("tree_method", ["hist", "approx"])
def test_tree_stats(tree_method: str) -> None:
with LocalCluster(n_workers=1) as cluster:
with Client(cluster) as client:
local = run_tree_stats(client, tree_method)
with LocalCluster(n_workers=2) as cluster:
with Client(cluster) as client:
distributed = run_tree_stats(client, tree_method)
assert local == distributed
def test_parallel_submit_multi_clients() -> None: def test_parallel_submit_multi_clients() -> None: