allow booster to be pickable, add copy function

This commit is contained in:
tqchen 2015-05-16 12:59:55 -07:00
parent 39f1da08d2
commit e6b8b23a2c

View File

@ -1,7 +1,9 @@
#!/usr/bin/python
import numpy as np
import scipy.sparse
import pickle
import xgboost as xgb
import copy
### simple example
# load file from text file, also binary buffer generated by xgboost
@ -28,6 +30,7 @@ bst.dump_model('dump.nice.txt','../data/featmap.txt')
# save dmatrix into binary buffer
dtest.save_binary('dtest.buffer')
# save model
bst.save_model('xgb.model')
# load model and data in
bst2 = xgb.Booster(model_file='xgb.model')
@ -36,6 +39,14 @@ preds2 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds2-preds)) == 0
# alternatively, you can pickle the booster
pks = pickle.dumps(bst2)
# load model and data in
bst3 = pickle.loads(pks)
preds3 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds3-preds)) == 0
###
# build dmatrix from scipy.sparse
print ('start running example of build DMatrix from scipy.sparse CSR Matrix')
@ -44,22 +55,22 @@ row = []; col = []; dat = []
i = 0
for l in open('../data/agaricus.txt.train'):
arr = l.split()
labels.append( int(arr[0]))
labels.append(int(arr[0]))
for it in arr[1:]:
k,v = it.split(':')
row.append(i); col.append(int(k)); dat.append(float(v))
i += 1
csr = scipy.sparse.csr_matrix( (dat, (row,col)) )
dtrain = xgb.DMatrix( csr, label = labels )
csr = scipy.sparse.csr_matrix((dat, (row,col)))
dtrain = xgb.DMatrix(csr, label = labels)
watchlist = [(dtest,'eval'), (dtrain,'train')]
bst = xgb.train( param, dtrain, num_round, watchlist )
bst = xgb.train(param, dtrain, num_round, watchlist)
print ('start running example of build DMatrix from scipy.sparse CSC Matrix')
# we can also construct from csc matrix
csc = scipy.sparse.csc_matrix( (dat, (row,col)) )
csc = scipy.sparse.csc_matrix((dat, (row,col)))
dtrain = xgb.DMatrix(csc, label=labels)
watchlist = [(dtest,'eval'), (dtrain,'train')]
bst = xgb.train( param, dtrain, num_round, watchlist )
bst = xgb.train(param, dtrain, num_round, watchlist)
print ('start running example of build DMatrix from numpy array')
# NOTE: npymat is numpy array, we will convert it into scipy.sparse.csr_matrix in internal implementation
@ -67,6 +78,6 @@ print ('start running example of build DMatrix from numpy array')
npymat = csr.todense()
dtrain = xgb.DMatrix(npymat, label = labels)
watchlist = [(dtest,'eval'), (dtrain,'train')]
bst = xgb.train( param, dtrain, num_round, watchlist )
bst = xgb.train(param, dtrain, num_round, watchlist)