allow booster to be pickable, add copy function
This commit is contained in:
parent
39f1da08d2
commit
e6b8b23a2c
@ -1,7 +1,9 @@
|
|||||||
#!/usr/bin/python
|
#!/usr/bin/python
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import scipy.sparse
|
import scipy.sparse
|
||||||
|
import pickle
|
||||||
import xgboost as xgb
|
import xgboost as xgb
|
||||||
|
import copy
|
||||||
|
|
||||||
### simple example
|
### simple example
|
||||||
# load file from text file, also binary buffer generated by xgboost
|
# load file from text file, also binary buffer generated by xgboost
|
||||||
@ -19,7 +21,7 @@ bst = xgb.train(param, dtrain, num_round, watchlist)
|
|||||||
# this is prediction
|
# this is prediction
|
||||||
preds = bst.predict(dtest)
|
preds = bst.predict(dtest)
|
||||||
labels = dtest.get_label()
|
labels = dtest.get_label()
|
||||||
print ('error=%f' % ( sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) /float(len(preds))))
|
print ('error=%f' % ( sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) /float(len(preds))))
|
||||||
bst.save_model('0001.model')
|
bst.save_model('0001.model')
|
||||||
# dump model
|
# dump model
|
||||||
bst.dump_model('dump.raw.txt')
|
bst.dump_model('dump.raw.txt')
|
||||||
@ -28,6 +30,7 @@ bst.dump_model('dump.nice.txt','../data/featmap.txt')
|
|||||||
|
|
||||||
# save dmatrix into binary buffer
|
# save dmatrix into binary buffer
|
||||||
dtest.save_binary('dtest.buffer')
|
dtest.save_binary('dtest.buffer')
|
||||||
|
# save model
|
||||||
bst.save_model('xgb.model')
|
bst.save_model('xgb.model')
|
||||||
# load model and data in
|
# load model and data in
|
||||||
bst2 = xgb.Booster(model_file='xgb.model')
|
bst2 = xgb.Booster(model_file='xgb.model')
|
||||||
@ -36,6 +39,14 @@ preds2 = bst2.predict(dtest2)
|
|||||||
# assert they are the same
|
# assert they are the same
|
||||||
assert np.sum(np.abs(preds2-preds)) == 0
|
assert np.sum(np.abs(preds2-preds)) == 0
|
||||||
|
|
||||||
|
# alternatively, you can pickle the booster
|
||||||
|
pks = pickle.dumps(bst2)
|
||||||
|
# load model and data in
|
||||||
|
bst3 = pickle.loads(pks)
|
||||||
|
preds3 = bst2.predict(dtest2)
|
||||||
|
# assert they are the same
|
||||||
|
assert np.sum(np.abs(preds3-preds)) == 0
|
||||||
|
|
||||||
###
|
###
|
||||||
# build dmatrix from scipy.sparse
|
# build dmatrix from scipy.sparse
|
||||||
print ('start running example of build DMatrix from scipy.sparse CSR Matrix')
|
print ('start running example of build DMatrix from scipy.sparse CSR Matrix')
|
||||||
@ -44,22 +55,22 @@ row = []; col = []; dat = []
|
|||||||
i = 0
|
i = 0
|
||||||
for l in open('../data/agaricus.txt.train'):
|
for l in open('../data/agaricus.txt.train'):
|
||||||
arr = l.split()
|
arr = l.split()
|
||||||
labels.append( int(arr[0]))
|
labels.append(int(arr[0]))
|
||||||
for it in arr[1:]:
|
for it in arr[1:]:
|
||||||
k,v = it.split(':')
|
k,v = it.split(':')
|
||||||
row.append(i); col.append(int(k)); dat.append(float(v))
|
row.append(i); col.append(int(k)); dat.append(float(v))
|
||||||
i += 1
|
i += 1
|
||||||
csr = scipy.sparse.csr_matrix( (dat, (row,col)) )
|
csr = scipy.sparse.csr_matrix((dat, (row,col)))
|
||||||
dtrain = xgb.DMatrix( csr, label = labels )
|
dtrain = xgb.DMatrix(csr, label = labels)
|
||||||
watchlist = [(dtest,'eval'), (dtrain,'train')]
|
watchlist = [(dtest,'eval'), (dtrain,'train')]
|
||||||
bst = xgb.train( param, dtrain, num_round, watchlist )
|
bst = xgb.train(param, dtrain, num_round, watchlist)
|
||||||
|
|
||||||
print ('start running example of build DMatrix from scipy.sparse CSC Matrix')
|
print ('start running example of build DMatrix from scipy.sparse CSC Matrix')
|
||||||
# we can also construct from csc matrix
|
# we can also construct from csc matrix
|
||||||
csc = scipy.sparse.csc_matrix( (dat, (row,col)) )
|
csc = scipy.sparse.csc_matrix((dat, (row,col)))
|
||||||
dtrain = xgb.DMatrix(csc, label=labels)
|
dtrain = xgb.DMatrix(csc, label=labels)
|
||||||
watchlist = [(dtest,'eval'), (dtrain,'train')]
|
watchlist = [(dtest,'eval'), (dtrain,'train')]
|
||||||
bst = xgb.train( param, dtrain, num_round, watchlist )
|
bst = xgb.train(param, dtrain, num_round, watchlist)
|
||||||
|
|
||||||
print ('start running example of build DMatrix from numpy array')
|
print ('start running example of build DMatrix from numpy array')
|
||||||
# NOTE: npymat is numpy array, we will convert it into scipy.sparse.csr_matrix in internal implementation
|
# NOTE: npymat is numpy array, we will convert it into scipy.sparse.csr_matrix in internal implementation
|
||||||
@ -67,6 +78,6 @@ print ('start running example of build DMatrix from numpy array')
|
|||||||
npymat = csr.todense()
|
npymat = csr.todense()
|
||||||
dtrain = xgb.DMatrix(npymat, label = labels)
|
dtrain = xgb.DMatrix(npymat, label = labels)
|
||||||
watchlist = [(dtest,'eval'), (dtrain,'train')]
|
watchlist = [(dtest,'eval'), (dtrain,'train')]
|
||||||
bst = xgb.train( param, dtrain, num_round, watchlist )
|
bst = xgb.train(param, dtrain, num_round, watchlist)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user