[SYCL]. Add implementation for loss-guided policy (#10681)

---------

Co-authored-by: Dmitry Razdoburdin <>
This commit is contained in:
Dmitry Razdoburdin 2024-08-09 03:04:46 +02:00 committed by GitHub
parent cc3b56fc37
commit e555a238bc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 169 additions and 7 deletions

View File

@ -79,6 +79,78 @@ void HistUpdater<GradientSumT>::BuildLocalHistograms(
builder_monitor_.Stop("BuildLocalHistograms"); builder_monitor_.Stop("BuildLocalHistograms");
} }
template<typename GradientSumT>
void HistUpdater<GradientSumT>::ExpandWithLossGuide(
const common::GHistIndexMatrix& gmat,
RegTree* p_tree,
const USMVector<GradientPair, MemoryType::on_device> &gpair) {
builder_monitor_.Start("ExpandWithLossGuide");
int num_leaves = 0;
const auto lr = param_.learning_rate;
ExpandEntry node(ExpandEntry::kRootNid, p_tree->GetDepth(ExpandEntry::kRootNid));
BuildHistogramsLossGuide(node, gmat, p_tree, gpair);
this->InitNewNode(ExpandEntry::kRootNid, gmat, gpair, *p_tree);
this->EvaluateSplits({node}, gmat, *p_tree);
node.split.loss_chg = snode_host_[ExpandEntry::kRootNid].best.loss_chg;
qexpand_loss_guided_->push(node);
++num_leaves;
while (!qexpand_loss_guided_->empty()) {
const ExpandEntry candidate = qexpand_loss_guided_->top();
const int nid = candidate.nid;
qexpand_loss_guided_->pop();
if (!candidate.IsValid(param_, num_leaves)) {
(*p_tree)[nid].SetLeaf(snode_host_[nid].weight * lr);
} else {
auto evaluator = tree_evaluator_.GetEvaluator();
NodeEntry<GradientSumT>& e = snode_host_[nid];
bst_float left_leaf_weight =
evaluator.CalcWeight(nid, GradStats<GradientSumT>{e.best.left_sum}) * lr;
bst_float right_leaf_weight =
evaluator.CalcWeight(nid, GradStats<GradientSumT>{e.best.right_sum}) * lr;
p_tree->ExpandNode(nid, e.best.SplitIndex(), e.best.split_value,
e.best.DefaultLeft(), e.weight, left_leaf_weight,
right_leaf_weight, e.best.loss_chg, e.stats.GetHess(),
e.best.left_sum.GetHess(), e.best.right_sum.GetHess());
this->ApplySplit({candidate}, gmat, p_tree);
const int cleft = (*p_tree)[nid].LeftChild();
const int cright = (*p_tree)[nid].RightChild();
ExpandEntry left_node(cleft, p_tree->GetDepth(cleft));
ExpandEntry right_node(cright, p_tree->GetDepth(cright));
if (row_set_collection_[cleft].Size() < row_set_collection_[cright].Size()) {
BuildHistogramsLossGuide(left_node, gmat, p_tree, gpair);
} else {
BuildHistogramsLossGuide(right_node, gmat, p_tree, gpair);
}
this->InitNewNode(cleft, gmat, gpair, *p_tree);
this->InitNewNode(cright, gmat, gpair, *p_tree);
bst_uint featureid = snode_host_[nid].best.SplitIndex();
tree_evaluator_.AddSplit(nid, cleft, cright, featureid,
snode_host_[cleft].weight, snode_host_[cright].weight);
interaction_constraints_.Split(nid, featureid, cleft, cright);
this->EvaluateSplits({left_node, right_node}, gmat, *p_tree);
left_node.split.loss_chg = snode_host_[cleft].best.loss_chg;
right_node.split.loss_chg = snode_host_[cright].best.loss_chg;
qexpand_loss_guided_->push(left_node);
qexpand_loss_guided_->push(right_node);
++num_leaves; // give two and take one, as parent is no longer a leaf
}
}
builder_monitor_.Stop("ExpandWithLossGuide");
}
template<typename GradientSumT> template<typename GradientSumT>
void HistUpdater<GradientSumT>::InitSampling( void HistUpdater<GradientSumT>::InitSampling(
const USMVector<GradientPair, MemoryType::on_device> &gpair, const USMVector<GradientPair, MemoryType::on_device> &gpair,
@ -249,6 +321,14 @@ void HistUpdater<GradientSumT>::InitData(
} }
std::fill(snode_host_.begin(), snode_host_.end(), NodeEntry<GradientSumT>(param_)); std::fill(snode_host_.begin(), snode_host_.end(), NodeEntry<GradientSumT>(param_));
{
if (param_.grow_policy == xgboost::tree::TrainParam::kLossGuide) {
qexpand_loss_guided_.reset(new ExpandQueue(LossGuide));
} else {
LOG(WARNING) << "Depth-wise building is not yet implemented";
}
}
builder_monitor_.Stop("InitData"); builder_monitor_.Stop("InitData");
} }
@ -306,7 +386,6 @@ void HistUpdater<GradientSumT>::InitNewNode(int nid,
const common::GHistIndexMatrix& gmat, const common::GHistIndexMatrix& gmat,
const USMVector<GradientPair, const USMVector<GradientPair,
MemoryType::on_device> &gpair, MemoryType::on_device> &gpair,
const DMatrix& fmat,
const RegTree& tree) { const RegTree& tree) {
builder_monitor_.Start("InitNewNode"); builder_monitor_.Start("InitNewNode");

View File

@ -14,6 +14,7 @@
#include <utility> #include <utility>
#include <vector> #include <vector>
#include <memory> #include <memory>
#include <queue>
#include "../common/partition_builder.h" #include "../common/partition_builder.h"
#include "split_evaluator.h" #include "split_evaluator.h"
@ -126,7 +127,6 @@ class HistUpdater {
void InitNewNode(int nid, void InitNewNode(int nid,
const common::GHistIndexMatrix& gmat, const common::GHistIndexMatrix& gmat,
const USMVector<GradientPair, MemoryType::on_device> &gpair, const USMVector<GradientPair, MemoryType::on_device> &gpair,
const DMatrix& fmat,
const RegTree& tree); const RegTree& tree);
void BuildLocalHistograms(const common::GHistIndexMatrix &gmat, void BuildLocalHistograms(const common::GHistIndexMatrix &gmat,
@ -139,6 +139,18 @@ class HistUpdater {
RegTree *p_tree, RegTree *p_tree,
const USMVector<GradientPair, MemoryType::on_device> &gpair); const USMVector<GradientPair, MemoryType::on_device> &gpair);
void ExpandWithLossGuide(const common::GHistIndexMatrix& gmat,
RegTree* p_tree,
const USMVector<GradientPair, MemoryType::on_device>& gpair);
inline static bool LossGuide(ExpandEntry lhs, ExpandEntry rhs) {
if (lhs.GetLossChange() == rhs.GetLossChange()) {
return lhs.GetNodeId() > rhs.GetNodeId(); // favor small timestamp
} else {
return lhs.GetLossChange() < rhs.GetLossChange(); // favor large loss_chg
}
}
// --data fields-- // --data fields--
const Context* ctx_; const Context* ctx_;
size_t sub_group_size_; size_t sub_group_size_;
@ -163,6 +175,12 @@ class HistUpdater {
const RegTree* p_last_tree_; const RegTree* p_last_tree_;
DMatrix const* const p_last_fmat_; DMatrix const* const p_last_fmat_;
using ExpandQueue =
std::priority_queue<ExpandEntry, std::vector<ExpandEntry>,
std::function<bool(ExpandEntry, ExpandEntry)>>;
std::unique_ptr<ExpandQueue> qexpand_loss_guided_;
enum DataLayout { kDenseDataZeroBased, kDenseDataOneBased, kSparseData }; enum DataLayout { kDenseDataZeroBased, kDenseDataOneBased, kSparseData };
DataLayout data_layout_; DataLayout data_layout_;

View File

@ -51,9 +51,8 @@ class TestHistUpdater : public HistUpdater<GradientSumT> {
auto TestInitNewNode(int nid, auto TestInitNewNode(int nid,
const common::GHistIndexMatrix& gmat, const common::GHistIndexMatrix& gmat,
const USMVector<GradientPair, MemoryType::on_device> &gpair, const USMVector<GradientPair, MemoryType::on_device> &gpair,
const DMatrix& fmat,
const RegTree& tree) { const RegTree& tree) {
HistUpdater<GradientSumT>::InitNewNode(nid, gmat, gpair, fmat, tree); HistUpdater<GradientSumT>::InitNewNode(nid, gmat, gpair, tree);
return HistUpdater<GradientSumT>::snode_host_[nid]; return HistUpdater<GradientSumT>::snode_host_[nid];
} }
@ -69,6 +68,13 @@ class TestHistUpdater : public HistUpdater<GradientSumT> {
RegTree* p_tree) { RegTree* p_tree) {
HistUpdater<GradientSumT>::ApplySplit(nodes, gmat, p_tree); HistUpdater<GradientSumT>::ApplySplit(nodes, gmat, p_tree);
} }
auto TestExpandWithLossGuide(const common::GHistIndexMatrix& gmat,
DMatrix *p_fmat,
RegTree* p_tree,
const USMVector<GradientPair, MemoryType::on_device> &gpair) {
HistUpdater<GradientSumT>::ExpandWithLossGuide(gmat, p_tree, gpair);
}
}; };
void GenerateRandomGPairs(::sycl::queue* qu, GradientPair* gpair_ptr, size_t num_rows, bool has_neg_hess) { void GenerateRandomGPairs(::sycl::queue* qu, GradientPair* gpair_ptr, size_t num_rows, bool has_neg_hess) {
@ -300,7 +306,7 @@ void TestHistUpdaterInitNewNode(const xgboost::tree::TrainParam& param, float sp
auto& row_idxs = row_set_collection->Data(); auto& row_idxs = row_set_collection->Data();
const size_t* row_idxs_ptr = row_idxs.DataConst(); const size_t* row_idxs_ptr = row_idxs.DataConst();
updater.TestBuildHistogramsLossGuide(node, gmat, &tree, gpair); updater.TestBuildHistogramsLossGuide(node, gmat, &tree, gpair);
const auto snode = updater.TestInitNewNode(ExpandEntry::kRootNid, gmat, gpair, *p_fmat, tree); const auto snode = updater.TestInitNewNode(ExpandEntry::kRootNid, gmat, gpair, tree);
GradStats<GradientSumT> grad_stat; GradStats<GradientSumT> grad_stat;
{ {
@ -360,7 +366,7 @@ void TestHistUpdaterEvaluateSplits(const xgboost::tree::TrainParam& param) {
auto& row_idxs = row_set_collection->Data(); auto& row_idxs = row_set_collection->Data();
const size_t* row_idxs_ptr = row_idxs.DataConst(); const size_t* row_idxs_ptr = row_idxs.DataConst();
const auto* hist = updater.TestBuildHistogramsLossGuide(node, gmat, &tree, gpair); const auto* hist = updater.TestBuildHistogramsLossGuide(node, gmat, &tree, gpair);
const auto snode_init = updater.TestInitNewNode(ExpandEntry::kRootNid, gmat, gpair, *p_fmat, tree); const auto snode_init = updater.TestInitNewNode(ExpandEntry::kRootNid, gmat, gpair, tree);
const auto snode_updated = updater.TestEvaluateSplits({node}, gmat, tree); const auto snode_updated = updater.TestEvaluateSplits({node}, gmat, tree);
auto best_loss_chg = snode_updated[0].best.loss_chg; auto best_loss_chg = snode_updated[0].best.loss_chg;
@ -488,6 +494,56 @@ void TestHistUpdaterApplySplit(const xgboost::tree::TrainParam& param, float spa
} }
} }
template <typename GradientSumT>
void TestHistUpdaterExpandWithLossGuide(const xgboost::tree::TrainParam& param) {
const size_t num_rows = 3;
const size_t num_columns = 1;
const size_t n_bins = 16;
Context ctx;
ctx.UpdateAllowUnknown(Args{{"device", "sycl"}});
DeviceManager device_manager;
auto qu = device_manager.GetQueue(ctx.Device());
std::vector<float> data = {7, 3, 15};
auto p_fmat = GetDMatrixFromData(data, num_rows, num_columns);
DeviceMatrix dmat;
dmat.Init(qu, p_fmat.get());
common::GHistIndexMatrix gmat;
gmat.Init(qu, &ctx, dmat, n_bins);
std::vector<GradientPair> gpair_host = {{1, 2}, {3, 1}, {1, 1}};
USMVector<GradientPair, MemoryType::on_device> gpair(&qu, gpair_host);
RegTree tree;
FeatureInteractionConstraintHost int_constraints;
ObjInfo task{ObjInfo::kRegression};
std::unique_ptr<TreeUpdater> pruner{TreeUpdater::Create("prune", &ctx, &task)};
TestHistUpdater<GradientSumT> updater(&ctx, qu, param, std::move(pruner), int_constraints, p_fmat.get());
updater.SetHistSynchronizer(new BatchHistSynchronizer<GradientSumT>());
updater.SetHistRowsAdder(new BatchHistRowsAdder<GradientSumT>());
auto* row_set_collection = updater.TestInitData(gmat, gpair, *p_fmat, tree);
updater.TestExpandWithLossGuide(gmat, p_fmat.get(), &tree, gpair);
const auto& nodes = tree.GetNodes();
std::vector<float> ans(data.size());
for (size_t data_idx = 0; data_idx < data.size(); ++data_idx) {
size_t node_idx = 0;
while (!nodes[node_idx].IsLeaf()) {
node_idx = data[data_idx] < nodes[node_idx].SplitCond() ? nodes[node_idx].LeftChild() : nodes[node_idx].RightChild();
}
ans[data_idx] = nodes[node_idx].LeafValue();
}
ASSERT_NEAR(ans[0], -0.15, 1e-6);
ASSERT_NEAR(ans[1], -0.45, 1e-6);
ASSERT_NEAR(ans[2], -0.15, 1e-6);
}
TEST(SyclHistUpdater, Sampling) { TEST(SyclHistUpdater, Sampling) {
xgboost::tree::TrainParam param; xgboost::tree::TrainParam param;
param.UpdateAllowUnknown(Args{{"subsample", "0.7"}}); param.UpdateAllowUnknown(Args{{"subsample", "0.7"}});
@ -555,4 +611,13 @@ TEST(SyclHistUpdater, ApplySplitDence) {
TestHistUpdaterApplySplit<double>(param, 0.0, (1u << 16) + 1); TestHistUpdaterApplySplit<double>(param, 0.0, (1u << 16) + 1);
} }
TEST(SyclHistUpdater, ExpandWithLossGuide) {
xgboost::tree::TrainParam param;
param.UpdateAllowUnknown(Args{{"max_depth", "2"},
{"grow_policy", "lossguide"}});
TestHistUpdaterExpandWithLossGuide<float>(param);
TestHistUpdaterExpandWithLossGuide<double>(param);
}
} // namespace xgboost::sycl::tree } // namespace xgboost::sycl::tree