Expose device sketching in header. (#5747)
This commit is contained in:
parent
0be0e6fd88
commit
e533908922
@ -18,10 +18,9 @@
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "../data/adapter.h"
|
||||
#include "../data/device_adapter.cuh"
|
||||
#include "device_helpers.cuh"
|
||||
#include "hist_util.h"
|
||||
#include "hist_util.cuh"
|
||||
#include "math.h" // NOLINT
|
||||
#include "quantile.h"
|
||||
#include "xgboost/host_device_vector.h"
|
||||
@ -29,87 +28,6 @@
|
||||
|
||||
namespace xgboost {
|
||||
namespace common {
|
||||
|
||||
using WQSketch = DenseCuts::WQSketch;
|
||||
using SketchEntry = WQSketch::Entry;
|
||||
|
||||
/*!
|
||||
* \brief A container that holds the device sketches across all
|
||||
* sparse page batches which are distributed to different devices.
|
||||
* As sketches are aggregated by column, the mutex guards
|
||||
* multiple devices pushing sketch summary for the same column
|
||||
* across distinct rows.
|
||||
*/
|
||||
struct SketchContainer {
|
||||
std::vector<DenseCuts::WQSketch> sketches_; // NOLINT
|
||||
static constexpr int kOmpNumColsParallelizeLimit = 1000;
|
||||
|
||||
SketchContainer(int max_bin, size_t num_columns, size_t num_rows) {
|
||||
// Initialize Sketches for this dmatrix
|
||||
sketches_.resize(num_columns);
|
||||
#pragma omp parallel for schedule(static) if (num_columns > kOmpNumColsParallelizeLimit) // NOLINT
|
||||
for (int icol = 0; icol < num_columns; ++icol) { // NOLINT
|
||||
sketches_[icol].Init(num_rows, 1.0 / (8 * max_bin));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Pushes cuts to the sketches.
|
||||
*
|
||||
* \param entries_per_column The entries per column.
|
||||
* \param entries Vector of cuts from all columns, length
|
||||
* entries_per_column * num_columns. \param column_scan Exclusive scan
|
||||
* of column sizes. Used to detect cases where there are fewer entries than we
|
||||
* have storage for.
|
||||
*/
|
||||
void Push(size_t entries_per_column,
|
||||
const thrust::host_vector<SketchEntry>& entries,
|
||||
const thrust::host_vector<size_t>& column_scan) {
|
||||
#pragma omp parallel for schedule(static) if (sketches_.size() > SketchContainer::kOmpNumColsParallelizeLimit) // NOLINT
|
||||
for (int icol = 0; icol < sketches_.size(); ++icol) {
|
||||
size_t column_size = column_scan[icol + 1] - column_scan[icol];
|
||||
if (column_size == 0) continue;
|
||||
WQuantileSketch<bst_float, bst_float>::SummaryContainer summary;
|
||||
size_t num_available_cuts =
|
||||
std::min(size_t(entries_per_column), column_size);
|
||||
summary.Reserve(num_available_cuts);
|
||||
summary.MakeFromSorted(&entries[entries_per_column * icol],
|
||||
num_available_cuts);
|
||||
|
||||
sketches_[icol].PushSummary(summary);
|
||||
}
|
||||
}
|
||||
|
||||
// Prevent copying/assigning/moving this as its internals can't be
|
||||
// assigned/copied/moved
|
||||
SketchContainer(const SketchContainer&) = delete;
|
||||
SketchContainer(const SketchContainer&&) = delete;
|
||||
SketchContainer& operator=(const SketchContainer&) = delete;
|
||||
SketchContainer& operator=(const SketchContainer&&) = delete;
|
||||
};
|
||||
|
||||
struct EntryCompareOp {
|
||||
__device__ bool operator()(const Entry& a, const Entry& b) {
|
||||
if (a.index == b.index) {
|
||||
return a.fvalue < b.fvalue;
|
||||
}
|
||||
return a.index < b.index;
|
||||
}
|
||||
};
|
||||
|
||||
// Compute number of sample cuts needed on local node to maintain accuracy
|
||||
// We take more cuts than needed and then reduce them later
|
||||
size_t RequiredSampleCuts(int max_bins, size_t num_rows) {
|
||||
constexpr int kFactor = 8;
|
||||
double eps = 1.0 / (kFactor * max_bins);
|
||||
size_t dummy_nlevel;
|
||||
size_t num_cuts;
|
||||
WQuantileSketch<bst_float, bst_float>::LimitSizeLevel(
|
||||
num_rows, eps, &dummy_nlevel, &num_cuts);
|
||||
return std::min(num_cuts, num_rows);
|
||||
}
|
||||
|
||||
|
||||
// Count the entries in each column and exclusive scan
|
||||
void GetColumnSizesScan(int device,
|
||||
dh::caching_device_vector<size_t>* column_sizes_scan,
|
||||
@ -128,16 +46,6 @@ void GetColumnSizesScan(int device,
|
||||
column_sizes_scan->end(), column_sizes_scan->begin());
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Extracts the cuts from sorted data.
|
||||
*
|
||||
* \param device The device.
|
||||
* \param cuts Output cuts
|
||||
* \param num_cuts_per_feature Number of cuts per feature.
|
||||
* \param sorted_data Sorted entries in segments of columns
|
||||
* \param column_sizes_scan Describes the boundaries of column segments in
|
||||
* sorted data
|
||||
*/
|
||||
void ExtractCuts(int device,
|
||||
size_t num_cuts_per_feature,
|
||||
Span<Entry const> sorted_data,
|
||||
@ -370,107 +278,5 @@ HistogramCuts DeviceSketch(int device, DMatrix* dmat, int max_bins,
|
||||
dense_cuts.Init(&sketch_container.sketches_, max_bins, dmat->Info().num_row_);
|
||||
return cuts;
|
||||
}
|
||||
|
||||
template <typename AdapterT>
|
||||
void ProcessBatch(AdapterT* adapter, size_t begin, size_t end, float missing,
|
||||
SketchContainer* sketch_container, int num_cuts) {
|
||||
dh::XGBCachingDeviceAllocator<char> alloc;
|
||||
adapter->BeforeFirst();
|
||||
adapter->Next();
|
||||
auto &batch = adapter->Value();
|
||||
// Enforce single batch
|
||||
CHECK(!adapter->Next());
|
||||
auto batch_iter = dh::MakeTransformIterator<data::COOTuple>(
|
||||
thrust::make_counting_iterator(0llu),
|
||||
[=] __device__(size_t idx) { return batch.GetElement(idx); });
|
||||
auto entry_iter = dh::MakeTransformIterator<Entry>(
|
||||
thrust::make_counting_iterator(0llu), [=] __device__(size_t idx) {
|
||||
return Entry(batch.GetElement(idx).column_idx,
|
||||
batch.GetElement(idx).value);
|
||||
});
|
||||
// Work out how many valid entries we have in each column
|
||||
dh::caching_device_vector<size_t> column_sizes_scan(adapter->NumColumns() + 1,
|
||||
0);
|
||||
|
||||
auto d_column_sizes_scan = column_sizes_scan.data().get();
|
||||
data::IsValidFunctor is_valid(missing);
|
||||
dh::LaunchN(adapter->DeviceIdx(), end - begin, [=] __device__(size_t idx) {
|
||||
auto e = batch_iter[begin + idx];
|
||||
if (is_valid(e)) {
|
||||
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT
|
||||
&d_column_sizes_scan[e.column_idx]),
|
||||
static_cast<unsigned long long>(1)); // NOLINT
|
||||
}
|
||||
});
|
||||
thrust::exclusive_scan(thrust::cuda::par(alloc), column_sizes_scan.begin(),
|
||||
column_sizes_scan.end(), column_sizes_scan.begin());
|
||||
thrust::host_vector<size_t> host_column_sizes_scan(column_sizes_scan);
|
||||
size_t num_valid = host_column_sizes_scan.back();
|
||||
|
||||
// Copy current subset of valid elements into temporary storage and sort
|
||||
dh::caching_device_vector<Entry> sorted_entries(num_valid);
|
||||
thrust::copy_if(thrust::cuda::par(alloc), entry_iter + begin,
|
||||
entry_iter + end, sorted_entries.begin(), is_valid);
|
||||
thrust::sort(thrust::cuda::par(alloc), sorted_entries.begin(),
|
||||
sorted_entries.end(), EntryCompareOp());
|
||||
|
||||
// Extract the cuts from all columns concurrently
|
||||
dh::caching_device_vector<SketchEntry> cuts(adapter->NumColumns() * num_cuts);
|
||||
ExtractCuts(adapter->DeviceIdx(), num_cuts,
|
||||
dh::ToSpan(sorted_entries),
|
||||
dh::ToSpan(column_sizes_scan),
|
||||
dh::ToSpan(cuts));
|
||||
|
||||
// Push cuts into sketches stored in host memory
|
||||
thrust::host_vector<SketchEntry> host_cuts(cuts);
|
||||
sketch_container->Push(num_cuts, host_cuts, host_column_sizes_scan);
|
||||
}
|
||||
|
||||
template <typename AdapterT>
|
||||
HistogramCuts AdapterDeviceSketch(AdapterT* adapter, int num_bins,
|
||||
float missing,
|
||||
size_t sketch_batch_num_elements) {
|
||||
size_t num_cuts = RequiredSampleCuts(num_bins, adapter->NumRows());
|
||||
if (sketch_batch_num_elements == 0) {
|
||||
int bytes_per_element = 16;
|
||||
size_t bytes_cuts = num_cuts * adapter->NumColumns() * sizeof(SketchEntry);
|
||||
size_t bytes_num_columns = (adapter->NumColumns() + 1) * sizeof(size_t);
|
||||
// use up to 80% of available space
|
||||
sketch_batch_num_elements = (dh::AvailableMemory(adapter->DeviceIdx()) -
|
||||
bytes_cuts - bytes_num_columns) *
|
||||
0.8 / bytes_per_element;
|
||||
}
|
||||
|
||||
CHECK(adapter->NumRows() != data::kAdapterUnknownSize);
|
||||
CHECK(adapter->NumColumns() != data::kAdapterUnknownSize);
|
||||
|
||||
adapter->BeforeFirst();
|
||||
adapter->Next();
|
||||
auto& batch = adapter->Value();
|
||||
|
||||
// Enforce single batch
|
||||
CHECK(!adapter->Next());
|
||||
|
||||
HistogramCuts cuts;
|
||||
DenseCuts dense_cuts(&cuts);
|
||||
SketchContainer sketch_container(num_bins, adapter->NumColumns(),
|
||||
adapter->NumRows());
|
||||
|
||||
for (auto begin = 0ull; begin < batch.Size();
|
||||
begin += sketch_batch_num_elements) {
|
||||
size_t end = std::min(batch.Size(), size_t(begin + sketch_batch_num_elements));
|
||||
ProcessBatch(adapter, begin, end, missing, &sketch_container, num_cuts);
|
||||
}
|
||||
|
||||
dense_cuts.Init(&sketch_container.sketches_, num_bins, adapter->NumRows());
|
||||
return cuts;
|
||||
}
|
||||
|
||||
template HistogramCuts AdapterDeviceSketch(data::CudfAdapter* adapter,
|
||||
int num_bins, float missing,
|
||||
size_t sketch_batch_size);
|
||||
template HistogramCuts AdapterDeviceSketch(data::CupyAdapter* adapter,
|
||||
int num_bins, float missing,
|
||||
size_t sketch_batch_size);
|
||||
} // namespace common
|
||||
} // namespace xgboost
|
||||
|
||||
209
src/common/hist_util.cuh
Normal file
209
src/common/hist_util.cuh
Normal file
@ -0,0 +1,209 @@
|
||||
#ifndef COMMON_HIST_UTIL_CUH_
|
||||
#define COMMON_HIST_UTIL_CUH_
|
||||
|
||||
#include <thrust/host_vector.h>
|
||||
|
||||
#include "hist_util.h"
|
||||
#include "device_helpers.cuh"
|
||||
#include "../data/device_adapter.cuh"
|
||||
|
||||
namespace xgboost {
|
||||
namespace common {
|
||||
|
||||
using WQSketch = DenseCuts::WQSketch;
|
||||
using SketchEntry = WQSketch::Entry;
|
||||
|
||||
/*!
|
||||
* \brief A container that holds the device sketches across all
|
||||
* sparse page batches which are distributed to different devices.
|
||||
* As sketches are aggregated by column, the mutex guards
|
||||
* multiple devices pushing sketch summary for the same column
|
||||
* across distinct rows.
|
||||
*/
|
||||
struct SketchContainer {
|
||||
std::vector<DenseCuts::WQSketch> sketches_; // NOLINT
|
||||
static constexpr int kOmpNumColsParallelizeLimit = 1000;
|
||||
|
||||
SketchContainer(int max_bin, size_t num_columns, size_t num_rows) {
|
||||
// Initialize Sketches for this dmatrix
|
||||
sketches_.resize(num_columns);
|
||||
#pragma omp parallel for schedule(static) if (num_columns > kOmpNumColsParallelizeLimit) // NOLINT
|
||||
for (int icol = 0; icol < num_columns; ++icol) { // NOLINT
|
||||
sketches_[icol].Init(num_rows, 1.0 / (8 * max_bin));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Pushes cuts to the sketches.
|
||||
*
|
||||
* \param entries_per_column The entries per column.
|
||||
* \param entries Vector of cuts from all columns, length
|
||||
* entries_per_column * num_columns. \param column_scan Exclusive scan
|
||||
* of column sizes. Used to detect cases where there are fewer entries than we
|
||||
* have storage for.
|
||||
*/
|
||||
void Push(size_t entries_per_column,
|
||||
const thrust::host_vector<SketchEntry>& entries,
|
||||
const thrust::host_vector<size_t>& column_scan) {
|
||||
#pragma omp parallel for schedule(static) if (sketches_.size() > SketchContainer::kOmpNumColsParallelizeLimit) // NOLINT
|
||||
for (int icol = 0; icol < sketches_.size(); ++icol) {
|
||||
size_t column_size = column_scan[icol + 1] - column_scan[icol];
|
||||
if (column_size == 0) continue;
|
||||
WQuantileSketch<bst_float, bst_float>::SummaryContainer summary;
|
||||
size_t num_available_cuts =
|
||||
std::min(size_t(entries_per_column), column_size);
|
||||
summary.Reserve(num_available_cuts);
|
||||
summary.MakeFromSorted(&entries[entries_per_column * icol],
|
||||
num_available_cuts);
|
||||
|
||||
sketches_[icol].PushSummary(summary);
|
||||
}
|
||||
}
|
||||
|
||||
// Prevent copying/assigning/moving this as its internals can't be
|
||||
// assigned/copied/moved
|
||||
SketchContainer(const SketchContainer&) = delete;
|
||||
SketchContainer(const SketchContainer&&) = delete;
|
||||
SketchContainer& operator=(const SketchContainer&) = delete;
|
||||
SketchContainer& operator=(const SketchContainer&&) = delete;
|
||||
};
|
||||
|
||||
struct EntryCompareOp {
|
||||
__device__ bool operator()(const Entry& a, const Entry& b) {
|
||||
if (a.index == b.index) {
|
||||
return a.fvalue < b.fvalue;
|
||||
}
|
||||
return a.index < b.index;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Extracts the cuts from sorted data.
|
||||
*
|
||||
* \param device The device.
|
||||
* \param cuts Output cuts
|
||||
* \param num_cuts_per_feature Number of cuts per feature.
|
||||
* \param sorted_data Sorted entries in segments of columns
|
||||
* \param column_sizes_scan Describes the boundaries of column segments in
|
||||
* sorted data
|
||||
*/
|
||||
void ExtractCuts(int device,
|
||||
size_t num_cuts_per_feature,
|
||||
Span<Entry const> sorted_data,
|
||||
Span<size_t const> column_sizes_scan,
|
||||
Span<SketchEntry> out_cuts);
|
||||
|
||||
// Compute number of sample cuts needed on local node to maintain accuracy
|
||||
// We take more cuts than needed and then reduce them later
|
||||
inline size_t RequiredSampleCuts(int max_bins, size_t num_rows) {
|
||||
constexpr int kFactor = 8;
|
||||
double eps = 1.0 / (kFactor * max_bins);
|
||||
size_t dummy_nlevel;
|
||||
size_t num_cuts;
|
||||
WQuantileSketch<bst_float, bst_float>::LimitSizeLevel(
|
||||
num_rows, eps, &dummy_nlevel, &num_cuts);
|
||||
return std::min(num_cuts, num_rows);
|
||||
}
|
||||
|
||||
// sketch_batch_num_elements 0 means autodetect. Only modify this for testing.
|
||||
HistogramCuts DeviceSketch(int device, DMatrix* dmat, int max_bins,
|
||||
size_t sketch_batch_num_elements = 0);
|
||||
|
||||
template <typename AdapterT>
|
||||
void ProcessBatch(AdapterT* adapter, size_t begin, size_t end, float missing,
|
||||
SketchContainer* sketch_container, int num_cuts) {
|
||||
dh::XGBCachingDeviceAllocator<char> alloc;
|
||||
adapter->BeforeFirst();
|
||||
adapter->Next();
|
||||
auto &batch = adapter->Value();
|
||||
// Enforce single batch
|
||||
CHECK(!adapter->Next());
|
||||
auto batch_iter = dh::MakeTransformIterator<data::COOTuple>(
|
||||
thrust::make_counting_iterator(0llu),
|
||||
[=] __device__(size_t idx) { return batch.GetElement(idx); });
|
||||
auto entry_iter = dh::MakeTransformIterator<Entry>(
|
||||
thrust::make_counting_iterator(0llu), [=] __device__(size_t idx) {
|
||||
return Entry(batch.GetElement(idx).column_idx,
|
||||
batch.GetElement(idx).value);
|
||||
});
|
||||
// Work out how many valid entries we have in each column
|
||||
dh::caching_device_vector<size_t> column_sizes_scan(adapter->NumColumns() + 1,
|
||||
0);
|
||||
|
||||
auto d_column_sizes_scan = column_sizes_scan.data().get();
|
||||
data::IsValidFunctor is_valid(missing);
|
||||
dh::LaunchN(adapter->DeviceIdx(), end - begin, [=] __device__(size_t idx) {
|
||||
auto e = batch_iter[begin + idx];
|
||||
if (is_valid(e)) {
|
||||
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT
|
||||
&d_column_sizes_scan[e.column_idx]),
|
||||
static_cast<unsigned long long>(1)); // NOLINT
|
||||
}
|
||||
});
|
||||
thrust::exclusive_scan(thrust::cuda::par(alloc), column_sizes_scan.begin(),
|
||||
column_sizes_scan.end(), column_sizes_scan.begin());
|
||||
thrust::host_vector<size_t> host_column_sizes_scan(column_sizes_scan);
|
||||
size_t num_valid = host_column_sizes_scan.back();
|
||||
|
||||
// Copy current subset of valid elements into temporary storage and sort
|
||||
dh::caching_device_vector<Entry> sorted_entries(num_valid);
|
||||
thrust::copy_if(thrust::cuda::par(alloc), entry_iter + begin,
|
||||
entry_iter + end, sorted_entries.begin(), is_valid);
|
||||
thrust::sort(thrust::cuda::par(alloc), sorted_entries.begin(),
|
||||
sorted_entries.end(), EntryCompareOp());
|
||||
|
||||
// Extract the cuts from all columns concurrently
|
||||
dh::caching_device_vector<SketchEntry> cuts(adapter->NumColumns() * num_cuts);
|
||||
ExtractCuts(adapter->DeviceIdx(), num_cuts,
|
||||
dh::ToSpan(sorted_entries),
|
||||
dh::ToSpan(column_sizes_scan),
|
||||
dh::ToSpan(cuts));
|
||||
|
||||
// Push cuts into sketches stored in host memory
|
||||
thrust::host_vector<SketchEntry> host_cuts(cuts);
|
||||
sketch_container->Push(num_cuts, host_cuts, host_column_sizes_scan);
|
||||
}
|
||||
|
||||
template <typename AdapterT>
|
||||
HistogramCuts AdapterDeviceSketch(AdapterT* adapter, int num_bins,
|
||||
float missing,
|
||||
size_t sketch_batch_num_elements = 0) {
|
||||
size_t num_cuts = RequiredSampleCuts(num_bins, adapter->NumRows());
|
||||
if (sketch_batch_num_elements == 0) {
|
||||
int bytes_per_element = 16;
|
||||
size_t bytes_cuts = num_cuts * adapter->NumColumns() * sizeof(SketchEntry);
|
||||
size_t bytes_num_columns = (adapter->NumColumns() + 1) * sizeof(size_t);
|
||||
// use up to 80% of available space
|
||||
sketch_batch_num_elements = (dh::AvailableMemory(adapter->DeviceIdx()) -
|
||||
bytes_cuts - bytes_num_columns) *
|
||||
0.8 / bytes_per_element;
|
||||
}
|
||||
|
||||
CHECK(adapter->NumRows() != data::kAdapterUnknownSize);
|
||||
CHECK(adapter->NumColumns() != data::kAdapterUnknownSize);
|
||||
|
||||
adapter->BeforeFirst();
|
||||
adapter->Next();
|
||||
auto& batch = adapter->Value();
|
||||
|
||||
// Enforce single batch
|
||||
CHECK(!adapter->Next());
|
||||
|
||||
HistogramCuts cuts;
|
||||
DenseCuts dense_cuts(&cuts);
|
||||
SketchContainer sketch_container(num_bins, adapter->NumColumns(),
|
||||
adapter->NumRows());
|
||||
|
||||
for (auto begin = 0ull; begin < batch.Size();
|
||||
begin += sketch_batch_num_elements) {
|
||||
size_t end = std::min(batch.Size(), size_t(begin + sketch_batch_num_elements));
|
||||
ProcessBatch(adapter, begin, end, missing, &sketch_container, num_cuts);
|
||||
}
|
||||
|
||||
dense_cuts.Init(&sketch_container.sketches_, num_bins, adapter->NumRows());
|
||||
return cuts;
|
||||
}
|
||||
} // namespace common
|
||||
} // namespace xgboost
|
||||
|
||||
#endif // COMMON_HIST_UTIL_CUH_
|
||||
@ -200,16 +200,6 @@ class DenseCuts : public CutsBuilder {
|
||||
void Build(DMatrix* p_fmat, uint32_t max_num_bins) override;
|
||||
};
|
||||
|
||||
// sketch_batch_num_elements 0 means autodetect. Only modify this for testing.
|
||||
HistogramCuts DeviceSketch(int device, DMatrix* dmat, int max_bins,
|
||||
size_t sketch_batch_num_elements = 0);
|
||||
|
||||
// sketch_batch_num_elements 0 means autodetect. Only modify this for testing.
|
||||
template <typename AdapterT>
|
||||
HistogramCuts AdapterDeviceSketch(AdapterT* adapter, int num_bins,
|
||||
float missing,
|
||||
size_t sketch_batch_num_elements = 0);
|
||||
|
||||
|
||||
enum BinTypeSize {
|
||||
kUint8BinsTypeSize = 1,
|
||||
|
||||
@ -5,7 +5,7 @@
|
||||
#include <xgboost/data.h>
|
||||
#include <thrust/iterator/discard_iterator.h>
|
||||
#include <thrust/iterator/transform_output_iterator.h>
|
||||
#include "../common/hist_util.h"
|
||||
#include "../common/hist_util.cuh"
|
||||
#include "../common/random.h"
|
||||
#include "./ellpack_page.cuh"
|
||||
#include "device_adapter.cuh"
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
|
||||
#include "../common/hist_util.h"
|
||||
#include "../common/hist_util.cuh"
|
||||
|
||||
#include "ellpack_page.cuh"
|
||||
#include "ellpack_page_source.h"
|
||||
|
||||
@ -13,6 +13,7 @@
|
||||
#include "../data/test_array_interface.h"
|
||||
#include "../../../src/common/device_helpers.cuh"
|
||||
#include "../../../src/common/hist_util.h"
|
||||
#include "../../../src/common/hist_util.cuh"
|
||||
#include "../../../src/data/device_adapter.cuh"
|
||||
#include "../../../src/common/math.h"
|
||||
#include "../../../src/data/simple_dmatrix.h"
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user