changes to reg booster
This commit is contained in:
parent
a0dddaf224
commit
e52720976c
3
Makefile
3
Makefile
@ -3,7 +3,7 @@ export CXX = g++
|
||||
export CFLAGS = -Wall -O3 -msse2
|
||||
|
||||
# specify tensor path
|
||||
BIN =
|
||||
BIN = xgboost
|
||||
OBJ = xgboost.o
|
||||
.PHONY: clean all
|
||||
|
||||
@ -11,6 +11,7 @@ all: $(BIN) $(OBJ)
|
||||
export LDFLAGS= -pthread -lm
|
||||
|
||||
xgboost.o: booster/xgboost.h booster/xgboost_data.h booster/xgboost.cpp booster/*/*.hpp booster/*/*.h
|
||||
xgboost: regression/xgboost_reg_main.cpp xgboost.o
|
||||
|
||||
$(BIN) :
|
||||
$(CXX) $(CFLAGS) $(LDFLAGS) -o $@ $(filter %.cpp %.o %.c, $^)
|
||||
|
||||
@ -8,6 +8,7 @@
|
||||
*/
|
||||
|
||||
#include <vector>
|
||||
#include <climits>
|
||||
#include "../utils/xgboost_utils.h"
|
||||
#include "../utils/xgboost_stream.h"
|
||||
|
||||
|
||||
@ -6,6 +6,8 @@
|
||||
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
|
||||
*/
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include "xgboost_regdata.h"
|
||||
#include "../booster/xgboost_gbmbase.h"
|
||||
#include "../utils/xgboost_utils.h"
|
||||
@ -16,11 +18,8 @@ namespace xgboost{
|
||||
/*! \brief class for gradient boosted regression */
|
||||
class RegBoostLearner{
|
||||
public:
|
||||
|
||||
RegBoostLearner(bool silent = false){
|
||||
this->silent = silent;
|
||||
}
|
||||
|
||||
/*! \brief constructor */
|
||||
RegBoostLearner( void ){}
|
||||
/*!
|
||||
* \brief a regression booter associated with training and evaluating data
|
||||
* \param train pointer to the training data
|
||||
@ -28,10 +27,9 @@ namespace xgboost{
|
||||
* \param evname name of evaluation data, used print statistics
|
||||
*/
|
||||
RegBoostLearner( const DMatrix *train,
|
||||
std::vector<const DMatrix *> evals,
|
||||
std::vector<std::string> evname, bool silent = false ){
|
||||
this->silent = silent;
|
||||
SetData(train,evals,evname);
|
||||
const std::vector<DMatrix *> &evals,
|
||||
const std::vector<std::string> &evname ){
|
||||
this->SetData(train,evals,evname);
|
||||
}
|
||||
|
||||
/*!
|
||||
@ -40,23 +38,22 @@ namespace xgboost{
|
||||
* \param evals array of evaluating data
|
||||
* \param evname name of evaluation data, used print statistics
|
||||
*/
|
||||
inline void SetData(const DMatrix *train,
|
||||
std::vector<const DMatrix *> evals,
|
||||
std::vector<std::string> evname){
|
||||
this->train_ = train;
|
||||
this->evals_ = evals;
|
||||
this->evname_ = evname;
|
||||
//assign buffer index
|
||||
int buffer_size = (*train).size();
|
||||
for(int i = 0; i < evals.size(); i++){
|
||||
buffer_size += (*evals[i]).size();
|
||||
}
|
||||
char str[25];
|
||||
_itoa(buffer_size,str,10);
|
||||
base_model.SetParam("num_pbuffer",str);
|
||||
base_model.SetParam("num_pbuffer",str);
|
||||
inline void SetData( const DMatrix *train,
|
||||
const std::vector<DMatrix *> &evals,
|
||||
const std::vector<std::string> &evname ){
|
||||
this->train_ = train;
|
||||
this->evals_ = evals;
|
||||
this->evname_ = evname;
|
||||
//assign buffer index
|
||||
unsigned buffer_size = static_cast<unsigned>( train->Size() );
|
||||
|
||||
for( size_t i = 0; i < evals.size(); ++ i ){
|
||||
buffer_size += static_cast<unsigned>( evals[i]->Size() );
|
||||
}
|
||||
char snum_pbuffer[25];
|
||||
printf( snum_pbuffer, "%u", buffer_size );
|
||||
base_model.SetParam( "num_pbuffer",snum_pbuffer );
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief set parameters from outside
|
||||
* \param name name of the parameter
|
||||
@ -72,17 +69,14 @@ namespace xgboost{
|
||||
*/
|
||||
inline void InitTrainer( void ){
|
||||
base_model.InitTrainer();
|
||||
InitModel();
|
||||
mparam.AdjustBase();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief initialize the current data storage for model, if the model is used first time, call this function
|
||||
*/
|
||||
inline void InitModel( void ){
|
||||
base_model.InitModel();
|
||||
}
|
||||
|
||||
mparam.AdjustBase();
|
||||
}
|
||||
/*!
|
||||
* \brief load model from stream
|
||||
* \param fi input stream
|
||||
@ -99,57 +93,78 @@ namespace xgboost{
|
||||
fo.Write( &mparam, sizeof(ModelParam) );
|
||||
base_model.SaveModel( fo );
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief update the model for one iteration
|
||||
* \param iteration the number of updating iteration
|
||||
*/
|
||||
inline void UpdateOneIter( int iteration ){
|
||||
std::vector<float> grad,hess,preds;
|
||||
std::vector<unsigned> root_index;
|
||||
booster::FMatrixS::Image train_image((*train_).data);
|
||||
Predict(preds,*train_,0);
|
||||
Gradient(preds,(*train_).labels,grad,hess);
|
||||
base_model.DoBoost(grad,hess,train_image,root_index);
|
||||
int buffer_index_offset = (*train_).size();
|
||||
float loss = 0.0;
|
||||
for(int i = 0; i < evals_.size();i++){
|
||||
Predict(preds, *evals_[i], buffer_index_offset);
|
||||
loss = mparam.Loss(preds,(*evals_[i]).labels);
|
||||
if(!silent){
|
||||
printf("The loss of %s data set in %d the \
|
||||
iteration is %f",evname_[i].c_str(),&iteration,&loss);
|
||||
}
|
||||
buffer_index_offset += (*evals_[i]).size();
|
||||
}
|
||||
* \brief update the model for one iteration
|
||||
* \param iteration iteration number
|
||||
*/
|
||||
inline void UpdateOneIter( int iter ){
|
||||
std::vector<float> grad, hess, preds;
|
||||
this->Predict( preds, *train_, 0 );
|
||||
this->GetGradient( preds, train_->labels, grad, hess );
|
||||
|
||||
std::vector<unsigned> root_index;
|
||||
booster::FMatrixS::Image train_image( train_->data );
|
||||
base_model.DoBoost(grad,hess,train_image,root_index);
|
||||
}
|
||||
/*!
|
||||
* \brief evaluate the model for specific iteration
|
||||
* \param iter iteration number
|
||||
* \param fo file to output log
|
||||
*/
|
||||
inline void EvalOneIter( int iter, FILE *fo = stderr ){
|
||||
std::vector<float> preds;
|
||||
fprintf( fo, "[%d]", iter );
|
||||
int buffer_offset = static_cast<int>( train_->Size() );
|
||||
|
||||
for(size_t i = 0; i < evals_.size();i++){
|
||||
this->Predict(preds, *evals_[i], buffer_offset);
|
||||
this->Eval( fo, evname_[i].c_str(), preds, (*evals_[i]).labels );
|
||||
buffer_offset += static_cast<int>( evals_[i]->Size() );
|
||||
}
|
||||
fprintf( fo,"\n" );
|
||||
}
|
||||
|
||||
/*! \brief get prediction, without buffering */
|
||||
inline void Predict( std::vector<float> &preds, const DMatrix &data ){
|
||||
preds.resize( data.Size() );
|
||||
for( size_t j = 0; j < data.Size(); j++ ){
|
||||
preds[j] = mparam.PredTransform
|
||||
( mparam.base_score + base_model.Predict( data.data[j], -1 ) );
|
||||
}
|
||||
}
|
||||
private:
|
||||
/*! \brief print evaluation results */
|
||||
inline void Eval( FILE *fo, const char *evname,
|
||||
const std::vector<float> &preds,
|
||||
const std::vector<float> &labels ){
|
||||
const float loss = mparam.Loss( preds, labels );
|
||||
fprintf( fo, "\t%s:%f", evname, loss );
|
||||
}
|
||||
/*! \brief get the transformed predictions, given data */
|
||||
inline void Predict( std::vector<float> &preds, const DMatrix &data,int buffer_index_offset = 0 ){
|
||||
int data_size = data.size();
|
||||
preds.resize(data_size);
|
||||
for(int j = 0; j < data_size; j++){
|
||||
preds[j] = mparam.PredTransform(mparam.base_score +
|
||||
base_model.Predict(data.data[j],buffer_index_offset + j));
|
||||
inline void Predict( std::vector<float> &preds, const DMatrix &data, unsigned buffer_offset ){
|
||||
preds.resize( data.Size() );
|
||||
for( size_t j = 0; j < data.Size(); j++ ){
|
||||
preds[j] = mparam.PredTransform
|
||||
( mparam.base_score + base_model.Predict( data.data[j], buffer_offset + j ) );
|
||||
}
|
||||
}
|
||||
|
||||
/*! \brief get the first order and second order gradient, given the transformed predictions and labels */
|
||||
inline void GetGradient( const std::vector<float> &preds,
|
||||
const std::vector<float> &labels,
|
||||
std::vector<float> &grad,
|
||||
std::vector<float> &hess ){
|
||||
grad.clear(); hess.clear();
|
||||
for( size_t j = 0; j < preds.size(); j++ ){
|
||||
grad.push_back( mparam.FirstOrderGradient (preds[j],labels[j]) );
|
||||
hess.push_back( mparam.SecondOrderGradient(preds[j],labels[j]) );
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
/*! \brief get the first order and second order gradient, given the transformed predictions and labels*/
|
||||
inline void Gradient(const std::vector<float> &preds, const std::vector<float> &labels, std::vector<float> &grad,
|
||||
std::vector<float> &hess){
|
||||
grad.clear();
|
||||
hess.clear();
|
||||
for(int j = 0; j < preds.size(); j++){
|
||||
grad.push_back(mparam.FirstOrderGradient(preds[j],labels[j]));
|
||||
hess.push_back(mparam.SecondOrderGradient(preds[j],labels[j]));
|
||||
}
|
||||
}
|
||||
|
||||
enum LOSS_TYPE_LIST{
|
||||
LINEAR_SQUARE,
|
||||
LOGISTIC_NEGLOGLIKELIHOOD,
|
||||
enum LossType{
|
||||
kLinearSquare = 0,
|
||||
kLogisticNeglik = 1,
|
||||
};
|
||||
|
||||
/*! \brief training parameter for regression */
|
||||
@ -181,6 +196,20 @@ namespace xgboost{
|
||||
base_score = - logf( 1.0f / base_score - 1.0f );
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief transform the linear sum to prediction
|
||||
* \param x linear sum of boosting ensemble
|
||||
* \return transformed prediction
|
||||
*/
|
||||
inline float PredTransform( float x ){
|
||||
switch( loss_type ){
|
||||
case kLinearSquare: return x;
|
||||
case kLogisticNeglik: return 1.0f/(1.0f + expf(-x));
|
||||
default: utils::Error("unknown loss_type"); return 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief calculate first order gradient of loss, given transformed prediction
|
||||
* \param predt transformed prediction
|
||||
@ -189,7 +218,7 @@ namespace xgboost{
|
||||
*/
|
||||
inline float FirstOrderGradient( float predt, float label ) const{
|
||||
switch( loss_type ){
|
||||
case LINEAR_SQUARE: return predt - label;
|
||||
case kLinearSquare: return predt - label;
|
||||
case 1: return predt - label;
|
||||
default: utils::Error("unknown loss_type"); return 0.0f;
|
||||
}
|
||||
@ -202,8 +231,8 @@ namespace xgboost{
|
||||
*/
|
||||
inline float SecondOrderGradient( float predt, float label ) const{
|
||||
switch( loss_type ){
|
||||
case LINEAR_SQUARE: return 1.0f;
|
||||
case LOGISTIC_NEGLOGLIKELIHOOD: return predt * ( 1 - predt );
|
||||
case kLinearSquare: return 1.0f;
|
||||
case kLogisticNeglik: return predt * ( 1 - predt );
|
||||
default: utils::Error("unknown loss_type"); return 0.0f;
|
||||
}
|
||||
}
|
||||
@ -216,8 +245,8 @@ namespace xgboost{
|
||||
*/
|
||||
inline float Loss(const std::vector<float> &preds, const std::vector<float> &labels) const{
|
||||
switch( loss_type ){
|
||||
case LINEAR_SQUARE: return SquareLoss(preds,labels);
|
||||
case LOGISTIC_NEGLOGLIKELIHOOD: return NegLoglikelihoodLoss(preds,labels);
|
||||
case kLinearSquare: return SquareLoss(preds,labels);
|
||||
case kLogisticNeglik: return NegLoglikelihoodLoss(preds,labels);
|
||||
default: utils::Error("unknown loss_type"); return 0.0f;
|
||||
}
|
||||
}
|
||||
@ -230,8 +259,10 @@ namespace xgboost{
|
||||
*/
|
||||
inline float SquareLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
|
||||
float ans = 0.0;
|
||||
for(int i = 0; i < preds.size(); i++)
|
||||
ans += pow(preds[i] - labels[i], 2);
|
||||
for(size_t i = 0; i < preds.size(); i++){
|
||||
float dif = preds[i] - labels[i];
|
||||
ans += dif * dif;
|
||||
}
|
||||
return ans;
|
||||
}
|
||||
|
||||
@ -243,34 +274,18 @@ namespace xgboost{
|
||||
*/
|
||||
inline float NegLoglikelihoodLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
|
||||
float ans = 0.0;
|
||||
for(int i = 0; i < preds.size(); i++)
|
||||
ans -= labels[i] * log(preds[i]) + ( 1 - labels[i] ) * log(1 - preds[i]);
|
||||
for(size_t i = 0; i < preds.size(); i++)
|
||||
ans -= labels[i] * logf(preds[i]) + ( 1 - labels[i] ) * logf(1 - preds[i]);
|
||||
return ans;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* \brief transform the linear sum to prediction
|
||||
* \param x linear sum of boosting ensemble
|
||||
* \return transformed prediction
|
||||
*/
|
||||
inline float PredTransform( float x ){
|
||||
switch( loss_type ){
|
||||
case LINEAR_SQUARE: return x;
|
||||
case LOGISTIC_NEGLOGLIKELIHOOD: return 1.0f/(1.0f + expf(-x));
|
||||
default: utils::Error("unknown loss_type"); return 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
};
|
||||
private:
|
||||
booster::GBMBaseModel base_model;
|
||||
ModelParam mparam;
|
||||
const DMatrix *train_;
|
||||
std::vector<const DMatrix *> evals_;
|
||||
std::vector<DMatrix *> evals_;
|
||||
std::vector<std::string> evname_;
|
||||
bool silent;
|
||||
std::vector<unsigned> buffer_index_;
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
@ -1,15 +1,180 @@
|
||||
#include"xgboost_reg_train.h"
|
||||
#include"xgboost_reg_test.h"
|
||||
using namespace xgboost::regression;
|
||||
#define _CRT_SECURE_NO_WARNINGS
|
||||
#define _CRT_SECURE_NO_DEPRECATE
|
||||
|
||||
int main(int argc, char *argv[]){
|
||||
//char* config_path = argv[1];
|
||||
//bool silent = ( atoi(argv[2]) == 1 );
|
||||
char* config_path = "c:\\cygwin64\\home\\chen\\github\\xgboost\\demo\\regression\\reg.conf";
|
||||
bool silent = false;
|
||||
RegBoostTrain train;
|
||||
train.train(config_path,false);
|
||||
#include <ctime>
|
||||
#include <string>
|
||||
#include <cstring>
|
||||
#include "xgboost_reg.h"
|
||||
#include "../utils/xgboost_random.h"
|
||||
#include "../utils/xgboost_config.h"
|
||||
|
||||
RegBoostTest test;
|
||||
test.test(config_path,false);
|
||||
}
|
||||
namespace xgboost{
|
||||
namespace regression{
|
||||
/*!
|
||||
* \brief wrapping the training process of the gradient boosting regression model,
|
||||
* given the configuation
|
||||
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.chen@gmail.com
|
||||
*/
|
||||
class RegBoostTask{
|
||||
public:
|
||||
inline int Run( int argc, char *argv[] ){
|
||||
if( argc < 2 ){
|
||||
printf("Usage: <config>\n");
|
||||
return 0;
|
||||
}
|
||||
utils::ConfigIterator itr( argv[1] );
|
||||
while( itr.Next() ){
|
||||
this->SetParam( itr.name(), itr.val() );
|
||||
}
|
||||
for( int i = 2; i < argc; i ++ ){
|
||||
char name[256], val[256];
|
||||
if( sscanf( argv[i], "%[^=]=%s", name, val ) == 2 ){
|
||||
this->SetParam( name, val );
|
||||
}
|
||||
}
|
||||
this->InitData();
|
||||
this->InitLearner();
|
||||
if( !strcmp( task.c_str(), "test") ){
|
||||
this->TaskTest();
|
||||
}else{
|
||||
this->TaskTrain();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
inline void SetParam( const char *name, const char *val ){
|
||||
if( !strcmp("silent", name ) ) silent = atoi( val );
|
||||
if( !strcmp("seed", name ) ) random::Seed( atoi(val) );
|
||||
if( !strcmp("num_round", name ) ) num_round = atoi( val );
|
||||
if( !strcmp("save_period", name ) ) save_period = atoi( val );
|
||||
if( !strcmp("task", name ) ) task = val;
|
||||
if( !strcmp("data", name ) ) train_path = val;
|
||||
if( !strcmp("test:data", name ) ) test_path = val;
|
||||
if( !strcmp("model_in", name ) ) model_in = val;
|
||||
if( !strcmp("model_dir", name ) ) model_dir_path = val;
|
||||
if( !strncmp("eval[", name, 5 ) ) {
|
||||
char evname[ 256 ];
|
||||
utils::Assert( sscanf( name, "eval[%[^]]", evname ) == 1, "must specify evaluation name for display");
|
||||
eval_data_names.push_back( std::string( evname ) );
|
||||
eval_data_paths.push_back( std::string( val ) );
|
||||
}
|
||||
cfg.PushBack( name, val );
|
||||
}
|
||||
public:
|
||||
RegBoostTask( void ){
|
||||
// default parameters
|
||||
silent = 0;
|
||||
num_round = 10;
|
||||
save_period = 0;
|
||||
task = "train";
|
||||
model_in = "NULL";
|
||||
name_pred = "pred.txt";
|
||||
model_dir_path = "./";
|
||||
}
|
||||
~RegBoostTask( void ){
|
||||
for( size_t i = 0; i < deval.size(); i ++ ){
|
||||
delete deval[i];
|
||||
}
|
||||
}
|
||||
private:
|
||||
inline void InitData( void ){
|
||||
if( !strcmp( task.c_str(), "test") ){
|
||||
data.CacheLoad( test_path.c_str() );
|
||||
}else{
|
||||
// training
|
||||
data.CacheLoad( train_path.c_str() );
|
||||
utils::Assert( eval_data_names.size() == eval_data_paths.size() );
|
||||
for( size_t i = 0; i < eval_data_names.size(); ++ i ){
|
||||
deval.push_back( new DMatrix() );
|
||||
deval.back()->CacheLoad( eval_data_paths[i].c_str() );
|
||||
}
|
||||
}
|
||||
learner.SetData( &data, deval, eval_data_names );
|
||||
}
|
||||
inline void InitLearner( void ){
|
||||
cfg.BeforeFirst();
|
||||
while( cfg.Next() ){
|
||||
learner.SetParam( cfg.name(), cfg.val() );
|
||||
}
|
||||
if( strcmp( model_in.c_str(), "NULL" ) != 0 ){
|
||||
utils::Assert( !strcmp( task.c_str(), "train"), "model_in not specified" );
|
||||
utils::FileStream fi( utils::FopenCheck( model_in.c_str(), "rb") );
|
||||
learner.LoadModel( fi );
|
||||
fi.Close();
|
||||
}else{
|
||||
learner.InitModel();
|
||||
}
|
||||
learner.InitTrainer();
|
||||
}
|
||||
inline void TaskTrain( void ){
|
||||
const time_t start = time( NULL );
|
||||
unsigned long elapsed = 0;
|
||||
for( int i = 0; i < num_round; ++ i ){
|
||||
elapsed = (unsigned long)(time(NULL) - start);
|
||||
if( !silent ) printf("boosting round %d, %lu sec elapsed\n", i , elapsed );
|
||||
learner.UpdateOneIter( i );
|
||||
learner.EvalOneIter( i );
|
||||
if( save_period != 0 && (i+1) % save_period == 0 ){
|
||||
SaveModel( i );
|
||||
}
|
||||
elapsed = (unsigned long)(time(NULL) - start);
|
||||
}
|
||||
// always save final round
|
||||
if( num_round % save_period != 0 ){
|
||||
SaveModel( num_round );
|
||||
}
|
||||
if( !silent ){
|
||||
printf("\nupdating end, %lu sec in all\n", elapsed );
|
||||
}
|
||||
}
|
||||
inline void SaveModel( int i ){
|
||||
char fname[256];
|
||||
sprintf( fname ,"%s/%04d.model", model_dir_path.c_str(), i+1 );
|
||||
utils::FileStream fo( utils::FopenCheck( fname, "wb" ) );
|
||||
learner.SaveModel( fo );
|
||||
fo.Close();
|
||||
}
|
||||
inline void TaskTest( void ){
|
||||
std::vector<float> preds;
|
||||
learner.Predict( preds, data );
|
||||
FILE *fo = utils::FopenCheck( name_pred.c_str(), "w" );
|
||||
for( size_t i = 0; i < preds.size(); i ++ ){
|
||||
fprintf( fo, "%f\n", preds[i] );
|
||||
}
|
||||
fclose( fo );
|
||||
}
|
||||
private:
|
||||
/* \brief whether silent */
|
||||
int silent;
|
||||
/* \brief number of boosting iterations */
|
||||
int num_round;
|
||||
/* \brief the period to save the model, 0 means only save the final round model */
|
||||
int save_period;
|
||||
/* \brief the path of training/test data set */
|
||||
std::string train_path, test_path;
|
||||
/* \brief the path of test model file, or file to restart training */
|
||||
std::string model_in;
|
||||
/* \brief the path of directory containing the saved models */
|
||||
std::string model_dir_path;
|
||||
/* \brief task to perform */
|
||||
std::string task;
|
||||
/* \brief name of predict file */
|
||||
std::string name_pred;
|
||||
/* \brief the paths of validation data sets */
|
||||
std::vector<std::string> eval_data_paths;
|
||||
/* \brief the names of the evaluation data used in output log */
|
||||
std::vector<std::string> eval_data_names;
|
||||
/*! \brief saves configurations */
|
||||
utils::ConfigSaver cfg;
|
||||
private:
|
||||
DMatrix data;
|
||||
std::vector<DMatrix*> deval;
|
||||
RegBoostLearner learner;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
int main( int argc, char *argv[] ){
|
||||
xgboost::random::Seed( 0 );
|
||||
xgboost::regression::RegBoostTask tsk;
|
||||
return tsk.Run( argc, argv );
|
||||
}
|
||||
|
||||
@ -27,7 +27,7 @@ namespace xgboost{
|
||||
* \param silent whether to print feedback messages
|
||||
*/
|
||||
void test(char* config_path,bool silent = false){
|
||||
reg_boost_learner = new xgboost::regression::RegBoostLearner(silent);
|
||||
reg_boost_learner = new xgboost::regression::RegBoostLearner();
|
||||
ConfigIterator config_itr(config_path);
|
||||
//Get the training data and validation data paths, config the Learner
|
||||
while (config_itr.Next()){
|
||||
@ -42,10 +42,11 @@ namespace xgboost{
|
||||
reg_boost_learner->InitModel();
|
||||
char model_path[256];
|
||||
std::vector<float> preds;
|
||||
for(int i = 0; i < test_param.test_paths.size(); i++){
|
||||
for(size_t i = 0; i < test_param.test_paths.size(); i++){
|
||||
xgboost::regression::DMatrix test_data;
|
||||
test_data.LoadText(test_param.test_paths[i].c_str());
|
||||
sprintf(model_path,"%s/final.model",test_param.model_dir_path);
|
||||
// BUG: model need to be rb
|
||||
FileStream fin(fopen(model_path,"r"));
|
||||
reg_boost_learner->LoadModel(fin);
|
||||
fin.Close();
|
||||
|
||||
@ -1,13 +1,13 @@
|
||||
#ifndef _XGBOOST_REG_TRAIN_H_
|
||||
#define _XGBOOST_REG_TRAIN_H_
|
||||
|
||||
#include<iostream>
|
||||
#include<string>
|
||||
#include<fstream>
|
||||
#include"../utils/xgboost_config.h"
|
||||
#include"xgboost_reg.h"
|
||||
#include"xgboost_regdata.h"
|
||||
#include"../utils/xgboost_string.h"
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <fstream>
|
||||
#include "../utils/xgboost_config.h"
|
||||
#include "xgboost_reg.h"
|
||||
#include "xgboost_regdata.h"
|
||||
#include "../utils/xgboost_string.h"
|
||||
|
||||
using namespace xgboost::utils;
|
||||
|
||||
@ -28,7 +28,8 @@ namespace xgboost{
|
||||
* \param silent whether to print feedback messages
|
||||
*/
|
||||
void train(char* config_path,bool silent = false){
|
||||
reg_boost_learner = new xgboost::regression::RegBoostLearner(silent);
|
||||
reg_boost_learner = new xgboost::regression::RegBoostLearner();
|
||||
|
||||
ConfigIterator config_itr(config_path);
|
||||
//Get the training data and validation data paths, config the Learner
|
||||
while (config_itr.Next()){
|
||||
@ -38,14 +39,14 @@ namespace xgboost{
|
||||
}
|
||||
|
||||
Assert(train_param.validation_data_paths.size() == train_param.validation_data_names.size(),
|
||||
"The number of validation paths is not the same as the number of validation data set names");
|
||||
"The number of validation paths is not the same as the number of validation data set names");
|
||||
|
||||
//Load Data
|
||||
xgboost::regression::DMatrix train;
|
||||
printf("%s",train_param.train_path);
|
||||
train.LoadText(train_param.train_path);
|
||||
std::vector<const xgboost::regression::DMatrix*> evals;
|
||||
for(int i = 0; i < train_param.validation_data_paths.size(); i++){
|
||||
for(size_t i = 0; i < train_param.validation_data_paths.size(); i++){
|
||||
xgboost::regression::DMatrix eval;
|
||||
eval.LoadText(train_param.validation_data_paths[i].c_str());
|
||||
evals.push_back(&eval);
|
||||
@ -58,7 +59,7 @@ namespace xgboost{
|
||||
for(int i = 1; i <= train_param.boost_iterations; i++){
|
||||
reg_boost_learner->UpdateOneIter(i);
|
||||
if(train_param.save_period != 0 && i % train_param.save_period == 0){
|
||||
sscanf(suffix,"%d.model",i);
|
||||
sprintf(suffix,"%d.model",i);
|
||||
SaveModel(suffix);
|
||||
}
|
||||
}
|
||||
|
||||
@ -31,12 +31,10 @@ namespace xgboost{
|
||||
/*! \brief default constructor */
|
||||
DMatrix( void ){}
|
||||
|
||||
|
||||
/*! \brief get the number of instances */
|
||||
inline int size() const{
|
||||
inline size_t Size() const{
|
||||
return labels.size();
|
||||
}
|
||||
|
||||
/*!
|
||||
* \brief load from text file
|
||||
* \param fname name of text data
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user