changes to reg booster

This commit is contained in:
tqchen 2014-02-20 22:08:31 -08:00
parent a0dddaf224
commit e52720976c
7 changed files with 312 additions and 130 deletions

View File

@ -3,7 +3,7 @@ export CXX = g++
export CFLAGS = -Wall -O3 -msse2
# specify tensor path
BIN =
BIN = xgboost
OBJ = xgboost.o
.PHONY: clean all
@ -11,6 +11,7 @@ all: $(BIN) $(OBJ)
export LDFLAGS= -pthread -lm
xgboost.o: booster/xgboost.h booster/xgboost_data.h booster/xgboost.cpp booster/*/*.hpp booster/*/*.h
xgboost: regression/xgboost_reg_main.cpp xgboost.o
$(BIN) :
$(CXX) $(CFLAGS) $(LDFLAGS) -o $@ $(filter %.cpp %.o %.c, $^)

View File

@ -8,6 +8,7 @@
*/
#include <vector>
#include <climits>
#include "../utils/xgboost_utils.h"
#include "../utils/xgboost_stream.h"

View File

@ -6,6 +6,8 @@
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
*/
#include <cmath>
#include <cstdlib>
#include <cstring>
#include "xgboost_regdata.h"
#include "../booster/xgboost_gbmbase.h"
#include "../utils/xgboost_utils.h"
@ -16,11 +18,8 @@ namespace xgboost{
/*! \brief class for gradient boosted regression */
class RegBoostLearner{
public:
RegBoostLearner(bool silent = false){
this->silent = silent;
}
/*! \brief constructor */
RegBoostLearner( void ){}
/*!
* \brief a regression booter associated with training and evaluating data
* \param train pointer to the training data
@ -28,10 +27,9 @@ namespace xgboost{
* \param evname name of evaluation data, used print statistics
*/
RegBoostLearner( const DMatrix *train,
std::vector<const DMatrix *> evals,
std::vector<std::string> evname, bool silent = false ){
this->silent = silent;
SetData(train,evals,evname);
const std::vector<DMatrix *> &evals,
const std::vector<std::string> &evname ){
this->SetData(train,evals,evname);
}
/*!
@ -40,23 +38,22 @@ namespace xgboost{
* \param evals array of evaluating data
* \param evname name of evaluation data, used print statistics
*/
inline void SetData(const DMatrix *train,
std::vector<const DMatrix *> evals,
std::vector<std::string> evname){
inline void SetData( const DMatrix *train,
const std::vector<DMatrix *> &evals,
const std::vector<std::string> &evname ){
this->train_ = train;
this->evals_ = evals;
this->evname_ = evname;
//assign buffer index
int buffer_size = (*train).size();
for(int i = 0; i < evals.size(); i++){
buffer_size += (*evals[i]).size();
}
char str[25];
_itoa(buffer_size,str,10);
base_model.SetParam("num_pbuffer",str);
base_model.SetParam("num_pbuffer",str);
}
unsigned buffer_size = static_cast<unsigned>( train->Size() );
for( size_t i = 0; i < evals.size(); ++ i ){
buffer_size += static_cast<unsigned>( evals[i]->Size() );
}
char snum_pbuffer[25];
printf( snum_pbuffer, "%u", buffer_size );
base_model.SetParam( "num_pbuffer",snum_pbuffer );
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
@ -72,17 +69,14 @@ namespace xgboost{
*/
inline void InitTrainer( void ){
base_model.InitTrainer();
InitModel();
mparam.AdjustBase();
}
/*!
* \brief initialize the current data storage for model, if the model is used first time, call this function
*/
inline void InitModel( void ){
base_model.InitModel();
mparam.AdjustBase();
}
/*!
* \brief load model from stream
* \param fi input stream
@ -99,57 +93,78 @@ namespace xgboost{
fo.Write( &mparam, sizeof(ModelParam) );
base_model.SaveModel( fo );
}
/*!
* \brief update the model for one iteration
* \param iteration the number of updating iteration
* \param iteration iteration number
*/
inline void UpdateOneIter( int iteration ){
std::vector<float> grad,hess,preds;
inline void UpdateOneIter( int iter ){
std::vector<float> grad, hess, preds;
this->Predict( preds, *train_, 0 );
this->GetGradient( preds, train_->labels, grad, hess );
std::vector<unsigned> root_index;
booster::FMatrixS::Image train_image((*train_).data);
Predict(preds,*train_,0);
Gradient(preds,(*train_).labels,grad,hess);
booster::FMatrixS::Image train_image( train_->data );
base_model.DoBoost(grad,hess,train_image,root_index);
int buffer_index_offset = (*train_).size();
float loss = 0.0;
for(int i = 0; i < evals_.size();i++){
Predict(preds, *evals_[i], buffer_index_offset);
loss = mparam.Loss(preds,(*evals_[i]).labels);
if(!silent){
printf("The loss of %s data set in %d the \
iteration is %f",evname_[i].c_str(),&iteration,&loss);
}
buffer_index_offset += (*evals_[i]).size();
/*!
* \brief evaluate the model for specific iteration
* \param iter iteration number
* \param fo file to output log
*/
inline void EvalOneIter( int iter, FILE *fo = stderr ){
std::vector<float> preds;
fprintf( fo, "[%d]", iter );
int buffer_offset = static_cast<int>( train_->Size() );
for(size_t i = 0; i < evals_.size();i++){
this->Predict(preds, *evals_[i], buffer_offset);
this->Eval( fo, evname_[i].c_str(), preds, (*evals_[i]).labels );
buffer_offset += static_cast<int>( evals_[i]->Size() );
}
fprintf( fo,"\n" );
}
/*! \brief get prediction, without buffering */
inline void Predict( std::vector<float> &preds, const DMatrix &data ){
preds.resize( data.Size() );
for( size_t j = 0; j < data.Size(); j++ ){
preds[j] = mparam.PredTransform
( mparam.base_score + base_model.Predict( data.data[j], -1 ) );
}
}
private:
/*! \brief print evaluation results */
inline void Eval( FILE *fo, const char *evname,
const std::vector<float> &preds,
const std::vector<float> &labels ){
const float loss = mparam.Loss( preds, labels );
fprintf( fo, "\t%s:%f", evname, loss );
}
/*! \brief get the transformed predictions, given data */
inline void Predict( std::vector<float> &preds, const DMatrix &data,int buffer_index_offset = 0 ){
int data_size = data.size();
preds.resize(data_size);
for(int j = 0; j < data_size; j++){
preds[j] = mparam.PredTransform(mparam.base_score +
base_model.Predict(data.data[j],buffer_index_offset + j));
inline void Predict( std::vector<float> &preds, const DMatrix &data, unsigned buffer_offset ){
preds.resize( data.Size() );
for( size_t j = 0; j < data.Size(); j++ ){
preds[j] = mparam.PredTransform
( mparam.base_score + base_model.Predict( data.data[j], buffer_offset + j ) );
}
}
/*! \brief get the first order and second order gradient, given the transformed predictions and labels */
inline void GetGradient( const std::vector<float> &preds,
const std::vector<float> &labels,
std::vector<float> &grad,
std::vector<float> &hess ){
grad.clear(); hess.clear();
for( size_t j = 0; j < preds.size(); j++ ){
grad.push_back( mparam.FirstOrderGradient (preds[j],labels[j]) );
hess.push_back( mparam.SecondOrderGradient(preds[j],labels[j]) );
}
}
private:
/*! \brief get the first order and second order gradient, given the transformed predictions and labels*/
inline void Gradient(const std::vector<float> &preds, const std::vector<float> &labels, std::vector<float> &grad,
std::vector<float> &hess){
grad.clear();
hess.clear();
for(int j = 0; j < preds.size(); j++){
grad.push_back(mparam.FirstOrderGradient(preds[j],labels[j]));
hess.push_back(mparam.SecondOrderGradient(preds[j],labels[j]));
}
}
enum LOSS_TYPE_LIST{
LINEAR_SQUARE,
LOGISTIC_NEGLOGLIKELIHOOD,
enum LossType{
kLinearSquare = 0,
kLogisticNeglik = 1,
};
/*! \brief training parameter for regression */
@ -181,6 +196,20 @@ namespace xgboost{
base_score = - logf( 1.0f / base_score - 1.0f );
}
}
/*!
* \brief transform the linear sum to prediction
* \param x linear sum of boosting ensemble
* \return transformed prediction
*/
inline float PredTransform( float x ){
switch( loss_type ){
case kLinearSquare: return x;
case kLogisticNeglik: return 1.0f/(1.0f + expf(-x));
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculate first order gradient of loss, given transformed prediction
* \param predt transformed prediction
@ -189,7 +218,7 @@ namespace xgboost{
*/
inline float FirstOrderGradient( float predt, float label ) const{
switch( loss_type ){
case LINEAR_SQUARE: return predt - label;
case kLinearSquare: return predt - label;
case 1: return predt - label;
default: utils::Error("unknown loss_type"); return 0.0f;
}
@ -202,8 +231,8 @@ namespace xgboost{
*/
inline float SecondOrderGradient( float predt, float label ) const{
switch( loss_type ){
case LINEAR_SQUARE: return 1.0f;
case LOGISTIC_NEGLOGLIKELIHOOD: return predt * ( 1 - predt );
case kLinearSquare: return 1.0f;
case kLogisticNeglik: return predt * ( 1 - predt );
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
@ -216,8 +245,8 @@ namespace xgboost{
*/
inline float Loss(const std::vector<float> &preds, const std::vector<float> &labels) const{
switch( loss_type ){
case LINEAR_SQUARE: return SquareLoss(preds,labels);
case LOGISTIC_NEGLOGLIKELIHOOD: return NegLoglikelihoodLoss(preds,labels);
case kLinearSquare: return SquareLoss(preds,labels);
case kLogisticNeglik: return NegLoglikelihoodLoss(preds,labels);
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
@ -230,8 +259,10 @@ namespace xgboost{
*/
inline float SquareLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
float ans = 0.0;
for(int i = 0; i < preds.size(); i++)
ans += pow(preds[i] - labels[i], 2);
for(size_t i = 0; i < preds.size(); i++){
float dif = preds[i] - labels[i];
ans += dif * dif;
}
return ans;
}
@ -243,34 +274,18 @@ namespace xgboost{
*/
inline float NegLoglikelihoodLoss(const std::vector<float> &preds, const std::vector<float> &labels) const{
float ans = 0.0;
for(int i = 0; i < preds.size(); i++)
ans -= labels[i] * log(preds[i]) + ( 1 - labels[i] ) * log(1 - preds[i]);
for(size_t i = 0; i < preds.size(); i++)
ans -= labels[i] * logf(preds[i]) + ( 1 - labels[i] ) * logf(1 - preds[i]);
return ans;
}
/*!
* \brief transform the linear sum to prediction
* \param x linear sum of boosting ensemble
* \return transformed prediction
*/
inline float PredTransform( float x ){
switch( loss_type ){
case LINEAR_SQUARE: return x;
case LOGISTIC_NEGLOGLIKELIHOOD: return 1.0f/(1.0f + expf(-x));
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
};
private:
booster::GBMBaseModel base_model;
ModelParam mparam;
const DMatrix *train_;
std::vector<const DMatrix *> evals_;
std::vector<DMatrix *> evals_;
std::vector<std::string> evname_;
bool silent;
std::vector<unsigned> buffer_index_;
};
}
};

View File

@ -1,15 +1,180 @@
#include"xgboost_reg_train.h"
#include"xgboost_reg_test.h"
using namespace xgboost::regression;
#define _CRT_SECURE_NO_WARNINGS
#define _CRT_SECURE_NO_DEPRECATE
int main(int argc, char *argv[]){
//char* config_path = argv[1];
//bool silent = ( atoi(argv[2]) == 1 );
char* config_path = "c:\\cygwin64\\home\\chen\\github\\xgboost\\demo\\regression\\reg.conf";
bool silent = false;
RegBoostTrain train;
train.train(config_path,false);
#include <ctime>
#include <string>
#include <cstring>
#include "xgboost_reg.h"
#include "../utils/xgboost_random.h"
#include "../utils/xgboost_config.h"
RegBoostTest test;
test.test(config_path,false);
namespace xgboost{
namespace regression{
/*!
* \brief wrapping the training process of the gradient boosting regression model,
* given the configuation
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.chen@gmail.com
*/
class RegBoostTask{
public:
inline int Run( int argc, char *argv[] ){
if( argc < 2 ){
printf("Usage: <config>\n");
return 0;
}
utils::ConfigIterator itr( argv[1] );
while( itr.Next() ){
this->SetParam( itr.name(), itr.val() );
}
for( int i = 2; i < argc; i ++ ){
char name[256], val[256];
if( sscanf( argv[i], "%[^=]=%s", name, val ) == 2 ){
this->SetParam( name, val );
}
}
this->InitData();
this->InitLearner();
if( !strcmp( task.c_str(), "test") ){
this->TaskTest();
}else{
this->TaskTrain();
}
return 0;
}
inline void SetParam( const char *name, const char *val ){
if( !strcmp("silent", name ) ) silent = atoi( val );
if( !strcmp("seed", name ) ) random::Seed( atoi(val) );
if( !strcmp("num_round", name ) ) num_round = atoi( val );
if( !strcmp("save_period", name ) ) save_period = atoi( val );
if( !strcmp("task", name ) ) task = val;
if( !strcmp("data", name ) ) train_path = val;
if( !strcmp("test:data", name ) ) test_path = val;
if( !strcmp("model_in", name ) ) model_in = val;
if( !strcmp("model_dir", name ) ) model_dir_path = val;
if( !strncmp("eval[", name, 5 ) ) {
char evname[ 256 ];
utils::Assert( sscanf( name, "eval[%[^]]", evname ) == 1, "must specify evaluation name for display");
eval_data_names.push_back( std::string( evname ) );
eval_data_paths.push_back( std::string( val ) );
}
cfg.PushBack( name, val );
}
public:
RegBoostTask( void ){
// default parameters
silent = 0;
num_round = 10;
save_period = 0;
task = "train";
model_in = "NULL";
name_pred = "pred.txt";
model_dir_path = "./";
}
~RegBoostTask( void ){
for( size_t i = 0; i < deval.size(); i ++ ){
delete deval[i];
}
}
private:
inline void InitData( void ){
if( !strcmp( task.c_str(), "test") ){
data.CacheLoad( test_path.c_str() );
}else{
// training
data.CacheLoad( train_path.c_str() );
utils::Assert( eval_data_names.size() == eval_data_paths.size() );
for( size_t i = 0; i < eval_data_names.size(); ++ i ){
deval.push_back( new DMatrix() );
deval.back()->CacheLoad( eval_data_paths[i].c_str() );
}
}
learner.SetData( &data, deval, eval_data_names );
}
inline void InitLearner( void ){
cfg.BeforeFirst();
while( cfg.Next() ){
learner.SetParam( cfg.name(), cfg.val() );
}
if( strcmp( model_in.c_str(), "NULL" ) != 0 ){
utils::Assert( !strcmp( task.c_str(), "train"), "model_in not specified" );
utils::FileStream fi( utils::FopenCheck( model_in.c_str(), "rb") );
learner.LoadModel( fi );
fi.Close();
}else{
learner.InitModel();
}
learner.InitTrainer();
}
inline void TaskTrain( void ){
const time_t start = time( NULL );
unsigned long elapsed = 0;
for( int i = 0; i < num_round; ++ i ){
elapsed = (unsigned long)(time(NULL) - start);
if( !silent ) printf("boosting round %d, %lu sec elapsed\n", i , elapsed );
learner.UpdateOneIter( i );
learner.EvalOneIter( i );
if( save_period != 0 && (i+1) % save_period == 0 ){
SaveModel( i );
}
elapsed = (unsigned long)(time(NULL) - start);
}
// always save final round
if( num_round % save_period != 0 ){
SaveModel( num_round );
}
if( !silent ){
printf("\nupdating end, %lu sec in all\n", elapsed );
}
}
inline void SaveModel( int i ){
char fname[256];
sprintf( fname ,"%s/%04d.model", model_dir_path.c_str(), i+1 );
utils::FileStream fo( utils::FopenCheck( fname, "wb" ) );
learner.SaveModel( fo );
fo.Close();
}
inline void TaskTest( void ){
std::vector<float> preds;
learner.Predict( preds, data );
FILE *fo = utils::FopenCheck( name_pred.c_str(), "w" );
for( size_t i = 0; i < preds.size(); i ++ ){
fprintf( fo, "%f\n", preds[i] );
}
fclose( fo );
}
private:
/* \brief whether silent */
int silent;
/* \brief number of boosting iterations */
int num_round;
/* \brief the period to save the model, 0 means only save the final round model */
int save_period;
/* \brief the path of training/test data set */
std::string train_path, test_path;
/* \brief the path of test model file, or file to restart training */
std::string model_in;
/* \brief the path of directory containing the saved models */
std::string model_dir_path;
/* \brief task to perform */
std::string task;
/* \brief name of predict file */
std::string name_pred;
/* \brief the paths of validation data sets */
std::vector<std::string> eval_data_paths;
/* \brief the names of the evaluation data used in output log */
std::vector<std::string> eval_data_names;
/*! \brief saves configurations */
utils::ConfigSaver cfg;
private:
DMatrix data;
std::vector<DMatrix*> deval;
RegBoostLearner learner;
};
};
};
int main( int argc, char *argv[] ){
xgboost::random::Seed( 0 );
xgboost::regression::RegBoostTask tsk;
return tsk.Run( argc, argv );
}

View File

@ -27,7 +27,7 @@ namespace xgboost{
* \param silent whether to print feedback messages
*/
void test(char* config_path,bool silent = false){
reg_boost_learner = new xgboost::regression::RegBoostLearner(silent);
reg_boost_learner = new xgboost::regression::RegBoostLearner();
ConfigIterator config_itr(config_path);
//Get the training data and validation data paths, config the Learner
while (config_itr.Next()){
@ -42,10 +42,11 @@ namespace xgboost{
reg_boost_learner->InitModel();
char model_path[256];
std::vector<float> preds;
for(int i = 0; i < test_param.test_paths.size(); i++){
for(size_t i = 0; i < test_param.test_paths.size(); i++){
xgboost::regression::DMatrix test_data;
test_data.LoadText(test_param.test_paths[i].c_str());
sprintf(model_path,"%s/final.model",test_param.model_dir_path);
// BUG: model need to be rb
FileStream fin(fopen(model_path,"r"));
reg_boost_learner->LoadModel(fin);
fin.Close();

View File

@ -1,13 +1,13 @@
#ifndef _XGBOOST_REG_TRAIN_H_
#define _XGBOOST_REG_TRAIN_H_
#include<iostream>
#include<string>
#include<fstream>
#include"../utils/xgboost_config.h"
#include"xgboost_reg.h"
#include"xgboost_regdata.h"
#include"../utils/xgboost_string.h"
#include <iostream>
#include <string>
#include <fstream>
#include "../utils/xgboost_config.h"
#include "xgboost_reg.h"
#include "xgboost_regdata.h"
#include "../utils/xgboost_string.h"
using namespace xgboost::utils;
@ -28,7 +28,8 @@ namespace xgboost{
* \param silent whether to print feedback messages
*/
void train(char* config_path,bool silent = false){
reg_boost_learner = new xgboost::regression::RegBoostLearner(silent);
reg_boost_learner = new xgboost::regression::RegBoostLearner();
ConfigIterator config_itr(config_path);
//Get the training data and validation data paths, config the Learner
while (config_itr.Next()){
@ -45,7 +46,7 @@ namespace xgboost{
printf("%s",train_param.train_path);
train.LoadText(train_param.train_path);
std::vector<const xgboost::regression::DMatrix*> evals;
for(int i = 0; i < train_param.validation_data_paths.size(); i++){
for(size_t i = 0; i < train_param.validation_data_paths.size(); i++){
xgboost::regression::DMatrix eval;
eval.LoadText(train_param.validation_data_paths[i].c_str());
evals.push_back(&eval);
@ -58,7 +59,7 @@ namespace xgboost{
for(int i = 1; i <= train_param.boost_iterations; i++){
reg_boost_learner->UpdateOneIter(i);
if(train_param.save_period != 0 && i % train_param.save_period == 0){
sscanf(suffix,"%d.model",i);
sprintf(suffix,"%d.model",i);
SaveModel(suffix);
}
}

View File

@ -31,12 +31,10 @@ namespace xgboost{
/*! \brief default constructor */
DMatrix( void ){}
/*! \brief get the number of instances */
inline int size() const{
inline size_t Size() const{
return labels.size();
}
/*!
* \brief load from text file
* \param fname name of text data