diff --git a/R-package/demo/basic_walkthrough.R b/R-package/demo/basic_walkthrough.R index 0b1e5b817..193618be3 100644 --- a/R-package/demo/basic_walkthrough.R +++ b/R-package/demo/basic_walkthrough.R @@ -102,9 +102,9 @@ xgb.dump(bst, "dump.raw.txt", with.stats = T) # Finally, you can check which features are the most important. print("Most important features (look at column Gain):") -imp_matrix <- xgb.importance(feature_names = train$data@Dimnames[[2]], filename_dump = "dump.raw.txt") +imp_matrix <- xgb.importance(feature_names = train$data@Dimnames[[2]], model = bst) print(imp_matrix) # Feature importance bar plot by gain print("Feature importance Plot : ") -print(xgb.plot.importance(imp_matrix)) +print(xgb.plot.importance(importance_matrix = imp_matrix)) diff --git a/R-package/demo/boost_from_prediction.R b/R-package/demo/boost_from_prediction.R index 9d7db806b..7fa7d8545 100644 --- a/R-package/demo/boost_from_prediction.R +++ b/R-package/demo/boost_from_prediction.R @@ -23,4 +23,4 @@ setinfo(dtrain, "base_margin", ptrain) setinfo(dtest, "base_margin", ptest) print('this is result of boost from initial prediction') -bst <- xgb.train( param, dtrain, 1, watchlist ) +bst <- xgb.train(params = param, data = dtrain, nrounds = 1, watchlist = watchlist) diff --git a/R-package/demo/create_sparse_matrix.R b/R-package/demo/create_sparse_matrix.R index 2fbf41772..7a8dfaa82 100644 --- a/R-package/demo/create_sparse_matrix.R +++ b/R-package/demo/create_sparse_matrix.R @@ -67,10 +67,9 @@ output_vector = df[,Y:=0][Improved == "Marked",Y:=1][,Y] cat("Learning...\n") bst <- xgboost(data = sparse_matrix, label = output_vector, max.depth = 9, eta = 1, nthread = 2, nround = 10,objective = "binary:logistic") -xgb.dump(bst, 'xgb.model.dump', with.stats = T) # sparse_matrix@Dimnames[[2]] represents the column names of the sparse matrix. -importance <- xgb.importance(sparse_matrix@Dimnames[[2]], 'xgb.model.dump') +importance <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model = bst) print(importance) # According to the matrix below, the most important feature in this dataset to predict if the treatment will work is the Age. The second most important feature is having received a placebo or not. The sex is third. Then we see our generated features (AgeDiscret). We can see that their contribution is very low (Gain column). diff --git a/R-package/demo/cross_validation.R b/R-package/demo/cross_validation.R index c3148ae21..5d748f679 100644 --- a/R-package/demo/cross_validation.R +++ b/R-package/demo/cross_validation.R @@ -43,9 +43,9 @@ evalerror <- function(preds, dtrain) { param <- list(max.depth=2,eta=1,silent=1, objective = logregobj, eval_metric = evalerror) # train with customized objective -xgb.cv(param, dtrain, nround, nfold = 5) +xgb.cv(params = param, data = dtrain, nrounds = nround, nfold = 5) # do cross validation with prediction values for each fold -res <- xgb.cv(param, dtrain, nround, nfold=5, prediction = TRUE) +res <- xgb.cv(params = param, data = dtrain, nrounds = nround, nfold = 5, prediction = TRUE) res$dt length(res$pred) diff --git a/R-package/demo/predict_leaf_indices.R b/R-package/demo/predict_leaf_indices.R index c03a17955..110bf9602 100644 --- a/R-package/demo/predict_leaf_indices.R +++ b/R-package/demo/predict_leaf_indices.R @@ -2,15 +2,15 @@ require(xgboost) # load in the agaricus dataset data(agaricus.train, package='xgboost') data(agaricus.test, package='xgboost') -dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) -dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label) +dtrain <- xgb.DMatrix(data = agaricus.train$data, label = agaricus.train$label) +dtest <- xgb.DMatrix(data = agaricus.test$data, label = agaricus.test$label) -param <- list(max.depth=2,eta=1,silent=1,objective='binary:logistic') +param <- list(max.depth=2, eta=1, silent=1, objective='binary:logistic') watchlist <- list(eval = dtest, train = dtrain) nround = 5 # training the model for two rounds -bst = xgb.train(param, dtrain, nround, nthread = 2, watchlist) +bst = xgb.train(params = param, data = dtrain, nrounds = nround, nthread = 2, watchlist = watchlist) cat('start testing prediction from first n trees\n') ### predict using first 2 tree