[doc] Integrate pyspark module into sphinx doc [skip ci] (#8066)

This commit is contained in:
Jiaming Yuan 2022-07-17 10:46:09 +08:00 committed by GitHub
parent 579ab23b10
commit e28f6f6657
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 47 additions and 13 deletions

View File

@ -207,10 +207,11 @@ intersphinx_mapping = {
"python": ("https://docs.python.org/3.6", None), "python": ("https://docs.python.org/3.6", None),
"numpy": ("https://docs.scipy.org/doc/numpy/", None), "numpy": ("https://docs.scipy.org/doc/numpy/", None),
"scipy": ("https://docs.scipy.org/doc/scipy/reference/", None), "scipy": ("https://docs.scipy.org/doc/scipy/reference/", None),
"pandas": ("http://pandas-docs.github.io/pandas-docs-travis/", None), "pandas": ("https://pandas.pydata.org/pandas-docs/stable/", None),
"sklearn": ("https://scikit-learn.org/stable", None), "sklearn": ("https://scikit-learn.org/stable", None),
"dask": ("https://docs.dask.org/en/stable/", None), "dask": ("https://docs.dask.org/en/stable/", None),
"distributed": ("https://distributed.dask.org/en/stable/", None), "distributed": ("https://distributed.dask.org/en/stable/", None),
"pyspark": ("https://spark.apache.org/docs/latest/api/python/", None),
} }

View File

@ -147,3 +147,29 @@ Dask API
:members: :members:
:inherited-members: :inherited-members:
:show-inheritance: :show-inheritance:
PySpark API
-----------
.. automodule:: xgboost.spark
.. autoclass:: xgboost.spark.SparkXGBClassifier
:members:
:inherited-members:
:show-inheritance:
.. autoclass:: xgboost.spark.SparkXGBClassifierModel
:members:
:inherited-members:
:show-inheritance:
.. autoclass:: xgboost.spark.SparkXGBRegressor
:members:
:inherited-members:
:show-inheritance:
.. autoclass:: xgboost.spark.SparkXGBRegressorModel
:members:
:inherited-members:
:show-inheritance:

View File

@ -9,4 +9,6 @@ graphviz
numpy numpy
recommonmark recommonmark
xgboost_ray xgboost_ray
sphinx-gallery sphinx-gallery
pyspark
cloudpickle

View File

@ -15,12 +15,13 @@ class SparkXGBRegressor(_SparkXGBEstimator):
""" """
SparkXGBRegressor is a PySpark ML estimator. It implements the XGBoost regression SparkXGBRegressor is a PySpark ML estimator. It implements the XGBoost regression
algorithm based on XGBoost python library, and it can be used in PySpark Pipeline algorithm based on XGBoost python library, and it can be used in PySpark Pipeline
and PySpark ML meta algorithms like CrossValidator/TrainValidationSplit/OneVsRest. and PySpark ML meta algorithms like :py:class:`~pyspark.ml.tuning.CrossValidator`/
:py:class:`~pyspark.ml.tuning.TrainValidationSplit`/
:py:class:`~pyspark.ml.classification.OneVsRest`
SparkXGBRegressor automatically supports most of the parameters in SparkXGBRegressor automatically supports most of the parameters in
`xgboost.XGBRegressor` constructor and most of the parameters used in `xgboost.XGBRegressor` constructor and most of the parameters used in
`xgboost.XGBRegressor` fit and predict method (see `API docs <https://xgboost.readthedocs\ :py:class:`xgboost.XGBRegressor` fit and predict method.
.io/en/latest/python/python_api.html#xgboost.XGBRegressor>`_ for details).
SparkXGBRegressor doesn't support setting `gpu_id` but support another param `use_gpu`, SparkXGBRegressor doesn't support setting `gpu_id` but support another param `use_gpu`,
see doc below for more details. see doc below for more details.
@ -65,7 +66,8 @@ class SparkXGBRegressor(_SparkXGBEstimator):
.. Note:: This API is experimental. .. Note:: This API is experimental.
**Examples** Examples
--------
>>> from xgboost.spark import SparkXGBRegressor >>> from xgboost.spark import SparkXGBRegressor
>>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.linalg import Vectors
@ -104,15 +106,16 @@ _set_pyspark_xgb_cls_param_attrs(SparkXGBRegressor, SparkXGBRegressorModel)
class SparkXGBClassifier(_SparkXGBEstimator, HasProbabilityCol, HasRawPredictionCol): class SparkXGBClassifier(_SparkXGBEstimator, HasProbabilityCol, HasRawPredictionCol):
""" """SparkXGBClassifier is a PySpark ML estimator. It implements the XGBoost
SparkXGBClassifier is a PySpark ML estimator. It implements the XGBoost classification classification algorithm based on XGBoost python library, and it can be used in
algorithm based on XGBoost python library, and it can be used in PySpark Pipeline PySpark Pipeline and PySpark ML meta algorithms like
and PySpark ML meta algorithms like CrossValidator/TrainValidationSplit/OneVsRest. :py:class:`~pyspark.ml.tuning.CrossValidator`/
:py:class:`~pyspark.ml.tuning.TrainValidationSplit`/
:py:class:`~pyspark.ml.classification.OneVsRest`
SparkXGBClassifier automatically supports most of the parameters in SparkXGBClassifier automatically supports most of the parameters in
`xgboost.XGBClassifier` constructor and most of the parameters used in `xgboost.XGBClassifier` constructor and most of the parameters used in
`xgboost.XGBClassifier` fit and predict method (see `API docs <https://xgboost.readthedocs\ :py:class:`xgboost.XGBClassifier` fit and predict method.
.io/en/latest/python/python_api.html#xgboost.XGBClassifier>`_ for details).
SparkXGBClassifier doesn't support setting `gpu_id` but support another param `use_gpu`, SparkXGBClassifier doesn't support setting `gpu_id` but support another param `use_gpu`,
see doc below for more details. see doc below for more details.
@ -127,6 +130,7 @@ class SparkXGBClassifier(_SparkXGBEstimator, HasProbabilityCol, HasRawPrediction
Parameters Parameters
---------- ----------
callbacks: callbacks:
The export and import of the callback functions are at best effort. For The export and import of the callback functions are at best effort. For
details, see :py:attr:`xgboost.spark.SparkXGBClassifier.callbacks` param doc. details, see :py:attr:`xgboost.spark.SparkXGBClassifier.callbacks` param doc.
@ -166,7 +170,8 @@ class SparkXGBClassifier(_SparkXGBEstimator, HasProbabilityCol, HasRawPrediction
.. Note:: This API is experimental. .. Note:: This API is experimental.
**Examples** Examples
--------
>>> from xgboost.spark import SparkXGBClassifier >>> from xgboost.spark import SparkXGBClassifier
>>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.linalg import Vectors