[doc] Integrate pyspark module into sphinx doc [skip ci] (#8066)
This commit is contained in:
parent
579ab23b10
commit
e28f6f6657
@ -207,10 +207,11 @@ intersphinx_mapping = {
|
||||
"python": ("https://docs.python.org/3.6", None),
|
||||
"numpy": ("https://docs.scipy.org/doc/numpy/", None),
|
||||
"scipy": ("https://docs.scipy.org/doc/scipy/reference/", None),
|
||||
"pandas": ("http://pandas-docs.github.io/pandas-docs-travis/", None),
|
||||
"pandas": ("https://pandas.pydata.org/pandas-docs/stable/", None),
|
||||
"sklearn": ("https://scikit-learn.org/stable", None),
|
||||
"dask": ("https://docs.dask.org/en/stable/", None),
|
||||
"distributed": ("https://distributed.dask.org/en/stable/", None),
|
||||
"pyspark": ("https://spark.apache.org/docs/latest/api/python/", None),
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -147,3 +147,29 @@ Dask API
|
||||
:members:
|
||||
:inherited-members:
|
||||
:show-inheritance:
|
||||
|
||||
|
||||
PySpark API
|
||||
-----------
|
||||
|
||||
.. automodule:: xgboost.spark
|
||||
|
||||
.. autoclass:: xgboost.spark.SparkXGBClassifier
|
||||
:members:
|
||||
:inherited-members:
|
||||
:show-inheritance:
|
||||
|
||||
.. autoclass:: xgboost.spark.SparkXGBClassifierModel
|
||||
:members:
|
||||
:inherited-members:
|
||||
:show-inheritance:
|
||||
|
||||
.. autoclass:: xgboost.spark.SparkXGBRegressor
|
||||
:members:
|
||||
:inherited-members:
|
||||
:show-inheritance:
|
||||
|
||||
.. autoclass:: xgboost.spark.SparkXGBRegressorModel
|
||||
:members:
|
||||
:inherited-members:
|
||||
:show-inheritance:
|
||||
|
||||
@ -9,4 +9,6 @@ graphviz
|
||||
numpy
|
||||
recommonmark
|
||||
xgboost_ray
|
||||
sphinx-gallery
|
||||
sphinx-gallery
|
||||
pyspark
|
||||
cloudpickle
|
||||
@ -15,12 +15,13 @@ class SparkXGBRegressor(_SparkXGBEstimator):
|
||||
"""
|
||||
SparkXGBRegressor is a PySpark ML estimator. It implements the XGBoost regression
|
||||
algorithm based on XGBoost python library, and it can be used in PySpark Pipeline
|
||||
and PySpark ML meta algorithms like CrossValidator/TrainValidationSplit/OneVsRest.
|
||||
and PySpark ML meta algorithms like :py:class:`~pyspark.ml.tuning.CrossValidator`/
|
||||
:py:class:`~pyspark.ml.tuning.TrainValidationSplit`/
|
||||
:py:class:`~pyspark.ml.classification.OneVsRest`
|
||||
|
||||
SparkXGBRegressor automatically supports most of the parameters in
|
||||
`xgboost.XGBRegressor` constructor and most of the parameters used in
|
||||
`xgboost.XGBRegressor` fit and predict method (see `API docs <https://xgboost.readthedocs\
|
||||
.io/en/latest/python/python_api.html#xgboost.XGBRegressor>`_ for details).
|
||||
:py:class:`xgboost.XGBRegressor` fit and predict method.
|
||||
|
||||
SparkXGBRegressor doesn't support setting `gpu_id` but support another param `use_gpu`,
|
||||
see doc below for more details.
|
||||
@ -65,7 +66,8 @@ class SparkXGBRegressor(_SparkXGBEstimator):
|
||||
|
||||
.. Note:: This API is experimental.
|
||||
|
||||
**Examples**
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> from xgboost.spark import SparkXGBRegressor
|
||||
>>> from pyspark.ml.linalg import Vectors
|
||||
@ -104,15 +106,16 @@ _set_pyspark_xgb_cls_param_attrs(SparkXGBRegressor, SparkXGBRegressorModel)
|
||||
|
||||
|
||||
class SparkXGBClassifier(_SparkXGBEstimator, HasProbabilityCol, HasRawPredictionCol):
|
||||
"""
|
||||
SparkXGBClassifier is a PySpark ML estimator. It implements the XGBoost classification
|
||||
algorithm based on XGBoost python library, and it can be used in PySpark Pipeline
|
||||
and PySpark ML meta algorithms like CrossValidator/TrainValidationSplit/OneVsRest.
|
||||
"""SparkXGBClassifier is a PySpark ML estimator. It implements the XGBoost
|
||||
classification algorithm based on XGBoost python library, and it can be used in
|
||||
PySpark Pipeline and PySpark ML meta algorithms like
|
||||
:py:class:`~pyspark.ml.tuning.CrossValidator`/
|
||||
:py:class:`~pyspark.ml.tuning.TrainValidationSplit`/
|
||||
:py:class:`~pyspark.ml.classification.OneVsRest`
|
||||
|
||||
SparkXGBClassifier automatically supports most of the parameters in
|
||||
`xgboost.XGBClassifier` constructor and most of the parameters used in
|
||||
`xgboost.XGBClassifier` fit and predict method (see `API docs <https://xgboost.readthedocs\
|
||||
.io/en/latest/python/python_api.html#xgboost.XGBClassifier>`_ for details).
|
||||
:py:class:`xgboost.XGBClassifier` fit and predict method.
|
||||
|
||||
SparkXGBClassifier doesn't support setting `gpu_id` but support another param `use_gpu`,
|
||||
see doc below for more details.
|
||||
@ -127,6 +130,7 @@ class SparkXGBClassifier(_SparkXGBEstimator, HasProbabilityCol, HasRawPrediction
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
callbacks:
|
||||
The export and import of the callback functions are at best effort. For
|
||||
details, see :py:attr:`xgboost.spark.SparkXGBClassifier.callbacks` param doc.
|
||||
@ -166,7 +170,8 @@ class SparkXGBClassifier(_SparkXGBEstimator, HasProbabilityCol, HasRawPrediction
|
||||
|
||||
.. Note:: This API is experimental.
|
||||
|
||||
**Examples**
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> from xgboost.spark import SparkXGBClassifier
|
||||
>>> from pyspark.ml.linalg import Vectors
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user