Use gpu predictor for get csr test. (#8323)
This commit is contained in:
parent
a71421e825
commit
e1f9f80df2
@ -1,13 +1,14 @@
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
import pytest
|
||||
import sys
|
||||
from hypothesis import given, strategies, settings
|
||||
from scipy import sparse
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from hypothesis import given, settings, strategies
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
sys.path.append("tests/python")
|
||||
import testing as tm
|
||||
import test_quantile_dmatrix as tqd
|
||||
import testing as tm
|
||||
|
||||
|
||||
class TestDeviceQuantileDMatrix:
|
||||
@ -107,9 +108,8 @@ class TestDeviceQuantileDMatrix:
|
||||
@settings(print_blob=True, deadline=None)
|
||||
def test_to_csr(self, n_samples, n_features, sparsity) -> None:
|
||||
import cupy as cp
|
||||
X, y = tm.make_sparse_regression(
|
||||
n_samples, n_features, sparsity, False
|
||||
)
|
||||
|
||||
X, y = tm.make_sparse_regression(n_samples, n_features, sparsity, False)
|
||||
h_X = X.astype(np.float32)
|
||||
|
||||
csr = h_X
|
||||
@ -130,10 +130,12 @@ class TestDeviceQuantileDMatrix:
|
||||
np.testing.assert_equal(h_ret.indptr, d_ret.indptr)
|
||||
np.testing.assert_equal(h_ret.indices, d_ret.indices)
|
||||
|
||||
booster = xgb.train({"tree_method": "gpu_hist"}, dtrain=d_m)
|
||||
booster = xgb.train(
|
||||
{"tree_method": "gpu_hist", "predictor": "gpu_predictor"}, dtrain=d_m
|
||||
)
|
||||
|
||||
np.testing.assert_allclose(
|
||||
booster.predict(d_m),
|
||||
booster.predict(xgb.DMatrix(d_m.get_data())),
|
||||
atol=1e-6
|
||||
atol=1e-6,
|
||||
)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user