Test categorical features with column-split gpu quantile (#9595)

This commit is contained in:
Rong Ou 2023-09-22 18:55:09 -07:00 committed by GitHub
parent a90d204942
commit def77870f3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 70 additions and 17 deletions

View File

@ -634,12 +634,25 @@ void SketchContainer::MakeCuts(HistogramCuts* p_cuts, bool is_column_split) {
}); });
CHECK_EQ(num_columns_, d_in_columns_ptr.size() - 1); CHECK_EQ(num_columns_, d_in_columns_ptr.size() - 1);
max_values.resize(d_in_columns_ptr.size() - 1); max_values.resize(d_in_columns_ptr.size() - 1);
// In some cases (e.g. column-wise data split), we may have empty columns, so we need to keep
// track of the unique keys (feature indices) after the thrust::reduce_by_key` call.
dh::caching_device_vector<size_t> d_max_keys(d_in_columns_ptr.size() - 1);
dh::caching_device_vector<SketchEntry> d_max_values(d_in_columns_ptr.size() - 1); dh::caching_device_vector<SketchEntry> d_max_values(d_in_columns_ptr.size() - 1);
thrust::reduce_by_key(thrust::cuda::par(alloc), key_it, key_it + in_cut_values.size(), val_it, auto new_end = thrust::reduce_by_key(
thrust::make_discard_iterator(), d_max_values.begin(), thrust::cuda::par(alloc), key_it, key_it + in_cut_values.size(), val_it, d_max_keys.begin(),
thrust::equal_to<bst_feature_t>{}, d_max_values.begin(), thrust::equal_to<bst_feature_t>{},
[] __device__(auto l, auto r) { return l.value > r.value ? l : r; }); [] __device__(auto l, auto r) { return l.value > r.value ? l : r; });
dh::CopyDeviceSpanToVector(&max_values, dh::ToSpan(d_max_values)); d_max_keys.erase(new_end.first, d_max_keys.end());
d_max_values.erase(new_end.second, d_max_values.end());
// The device vector needs to be initialized explicitly since we may have some missing columns.
SketchEntry default_entry{};
dh::caching_device_vector<SketchEntry> d_max_results(d_in_columns_ptr.size() - 1,
default_entry);
thrust::scatter(thrust::cuda::par(alloc), d_max_values.begin(), d_max_values.end(),
d_max_keys.begin(), d_max_results.begin());
dh::CopyDeviceSpanToVector(&max_values, dh::ToSpan(d_max_results));
auto max_it = MakeIndexTransformIter([&](auto i) { auto max_it = MakeIndexTransformIter([&](auto i) {
if (IsCat(h_feature_types, i)) { if (IsCat(h_feature_types, i)) {
return max_values[i].value; return max_values[i].value;

View File

@ -35,13 +35,13 @@ struct WQSummary {
/*! \brief an entry in the sketch summary */ /*! \brief an entry in the sketch summary */
struct Entry { struct Entry {
/*! \brief minimum rank */ /*! \brief minimum rank */
RType rmin; RType rmin{};
/*! \brief maximum rank */ /*! \brief maximum rank */
RType rmax; RType rmax{};
/*! \brief maximum weight */ /*! \brief maximum weight */
RType wmin; RType wmin{};
/*! \brief the value of data */ /*! \brief the value of data */
DType value; DType value{};
// constructor // constructor
XGBOOST_DEVICE Entry() {} // NOLINT XGBOOST_DEVICE Entry() {} // NOLINT
// constructor // constructor

View File

@ -339,6 +339,31 @@ TEST(GPUQuantile, MultiMerge) {
}); });
} }
TEST(GPUQuantile, MissingColumns) {
auto dmat = std::unique_ptr<DMatrix>{[=]() {
std::size_t constexpr kRows = 1000, kCols = 100;
auto sparsity = 0.5f;
std::vector<FeatureType> ft(kCols);
for (size_t i = 0; i < ft.size(); ++i) {
ft[i] = (i % 2 == 0) ? FeatureType::kNumerical : FeatureType::kCategorical;
}
auto dmat = RandomDataGenerator{kRows, kCols, sparsity}
.Seed(0)
.Lower(.0f)
.Upper(1.0f)
.Type(ft)
.MaxCategory(13)
.GenerateDMatrix();
return dmat->SliceCol(2, 1);
}()};
dmat->Info().data_split_mode = DataSplitMode::kRow;
auto ctx = MakeCUDACtx(0);
std::size_t constexpr kBins = 64;
HistogramCuts cuts = common::DeviceSketch(&ctx, dmat.get(), kBins);
ASSERT_TRUE(cuts.HasCategorical());
}
namespace { namespace {
void TestAllReduceBasic() { void TestAllReduceBasic() {
auto const world = collective::GetWorldSize(); auto const world = collective::GetWorldSize();
@ -422,18 +447,14 @@ TEST_F(MGPUQuantileTest, AllReduceBasic) {
} }
namespace { namespace {
void TestColumnSplitBasic() { void TestColumnSplit(DMatrix* dmat) {
auto const world = collective::GetWorldSize(); auto const world = collective::GetWorldSize();
auto const rank = collective::GetRank(); auto const rank = collective::GetRank();
std::size_t constexpr kRows = 1000, kCols = 100, kBins = 64; auto m = std::unique_ptr<DMatrix>{dmat->SliceCol(world, rank)};
auto m = std::unique_ptr<DMatrix>{[=]() {
auto dmat = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
return dmat->SliceCol(world, rank);
}()};
// Generate cuts for distributed environment. // Generate cuts for distributed environment.
auto ctx = MakeCUDACtx(GPUIDX); auto ctx = MakeCUDACtx(GPUIDX);
std::size_t constexpr kBins = 64;
HistogramCuts distributed_cuts = common::DeviceSketch(&ctx, m.get(), kBins); HistogramCuts distributed_cuts = common::DeviceSketch(&ctx, m.get(), kBins);
// Generate cuts for single node environment // Generate cuts for single node environment
@ -466,7 +487,26 @@ void TestColumnSplitBasic() {
} // anonymous namespace } // anonymous namespace
TEST_F(MGPUQuantileTest, ColumnSplitBasic) { TEST_F(MGPUQuantileTest, ColumnSplitBasic) {
DoTest(TestColumnSplitBasic); std::size_t constexpr kRows = 1000, kCols = 100;
auto dmat = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
DoTest(TestColumnSplit, dmat.get());
}
TEST_F(MGPUQuantileTest, ColumnSplitCategorical) {
std::size_t constexpr kRows = 1000, kCols = 100;
auto sparsity = 0.5f;
std::vector<FeatureType> ft(kCols);
for (size_t i = 0; i < ft.size(); ++i) {
ft[i] = (i % 2 == 0) ? FeatureType::kNumerical : FeatureType::kCategorical;
}
auto dmat = RandomDataGenerator{kRows, kCols, sparsity}
.Seed(0)
.Lower(.0f)
.Upper(1.0f)
.Type(ft)
.MaxCategory(13)
.GenerateDMatrix();
DoTest(TestColumnSplit, dmat.get());
} }
namespace { namespace {