Test categorical features with column-split gpu quantile (#9595)
This commit is contained in:
parent
a90d204942
commit
def77870f3
@ -634,12 +634,25 @@ void SketchContainer::MakeCuts(HistogramCuts* p_cuts, bool is_column_split) {
|
|||||||
});
|
});
|
||||||
CHECK_EQ(num_columns_, d_in_columns_ptr.size() - 1);
|
CHECK_EQ(num_columns_, d_in_columns_ptr.size() - 1);
|
||||||
max_values.resize(d_in_columns_ptr.size() - 1);
|
max_values.resize(d_in_columns_ptr.size() - 1);
|
||||||
|
|
||||||
|
// In some cases (e.g. column-wise data split), we may have empty columns, so we need to keep
|
||||||
|
// track of the unique keys (feature indices) after the thrust::reduce_by_key` call.
|
||||||
|
dh::caching_device_vector<size_t> d_max_keys(d_in_columns_ptr.size() - 1);
|
||||||
dh::caching_device_vector<SketchEntry> d_max_values(d_in_columns_ptr.size() - 1);
|
dh::caching_device_vector<SketchEntry> d_max_values(d_in_columns_ptr.size() - 1);
|
||||||
thrust::reduce_by_key(thrust::cuda::par(alloc), key_it, key_it + in_cut_values.size(), val_it,
|
auto new_end = thrust::reduce_by_key(
|
||||||
thrust::make_discard_iterator(), d_max_values.begin(),
|
thrust::cuda::par(alloc), key_it, key_it + in_cut_values.size(), val_it, d_max_keys.begin(),
|
||||||
thrust::equal_to<bst_feature_t>{},
|
d_max_values.begin(), thrust::equal_to<bst_feature_t>{},
|
||||||
[] __device__(auto l, auto r) { return l.value > r.value ? l : r; });
|
[] __device__(auto l, auto r) { return l.value > r.value ? l : r; });
|
||||||
dh::CopyDeviceSpanToVector(&max_values, dh::ToSpan(d_max_values));
|
d_max_keys.erase(new_end.first, d_max_keys.end());
|
||||||
|
d_max_values.erase(new_end.second, d_max_values.end());
|
||||||
|
|
||||||
|
// The device vector needs to be initialized explicitly since we may have some missing columns.
|
||||||
|
SketchEntry default_entry{};
|
||||||
|
dh::caching_device_vector<SketchEntry> d_max_results(d_in_columns_ptr.size() - 1,
|
||||||
|
default_entry);
|
||||||
|
thrust::scatter(thrust::cuda::par(alloc), d_max_values.begin(), d_max_values.end(),
|
||||||
|
d_max_keys.begin(), d_max_results.begin());
|
||||||
|
dh::CopyDeviceSpanToVector(&max_values, dh::ToSpan(d_max_results));
|
||||||
auto max_it = MakeIndexTransformIter([&](auto i) {
|
auto max_it = MakeIndexTransformIter([&](auto i) {
|
||||||
if (IsCat(h_feature_types, i)) {
|
if (IsCat(h_feature_types, i)) {
|
||||||
return max_values[i].value;
|
return max_values[i].value;
|
||||||
|
|||||||
@ -35,13 +35,13 @@ struct WQSummary {
|
|||||||
/*! \brief an entry in the sketch summary */
|
/*! \brief an entry in the sketch summary */
|
||||||
struct Entry {
|
struct Entry {
|
||||||
/*! \brief minimum rank */
|
/*! \brief minimum rank */
|
||||||
RType rmin;
|
RType rmin{};
|
||||||
/*! \brief maximum rank */
|
/*! \brief maximum rank */
|
||||||
RType rmax;
|
RType rmax{};
|
||||||
/*! \brief maximum weight */
|
/*! \brief maximum weight */
|
||||||
RType wmin;
|
RType wmin{};
|
||||||
/*! \brief the value of data */
|
/*! \brief the value of data */
|
||||||
DType value;
|
DType value{};
|
||||||
// constructor
|
// constructor
|
||||||
XGBOOST_DEVICE Entry() {} // NOLINT
|
XGBOOST_DEVICE Entry() {} // NOLINT
|
||||||
// constructor
|
// constructor
|
||||||
|
|||||||
@ -339,6 +339,31 @@ TEST(GPUQuantile, MultiMerge) {
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST(GPUQuantile, MissingColumns) {
|
||||||
|
auto dmat = std::unique_ptr<DMatrix>{[=]() {
|
||||||
|
std::size_t constexpr kRows = 1000, kCols = 100;
|
||||||
|
auto sparsity = 0.5f;
|
||||||
|
std::vector<FeatureType> ft(kCols);
|
||||||
|
for (size_t i = 0; i < ft.size(); ++i) {
|
||||||
|
ft[i] = (i % 2 == 0) ? FeatureType::kNumerical : FeatureType::kCategorical;
|
||||||
|
}
|
||||||
|
auto dmat = RandomDataGenerator{kRows, kCols, sparsity}
|
||||||
|
.Seed(0)
|
||||||
|
.Lower(.0f)
|
||||||
|
.Upper(1.0f)
|
||||||
|
.Type(ft)
|
||||||
|
.MaxCategory(13)
|
||||||
|
.GenerateDMatrix();
|
||||||
|
return dmat->SliceCol(2, 1);
|
||||||
|
}()};
|
||||||
|
dmat->Info().data_split_mode = DataSplitMode::kRow;
|
||||||
|
|
||||||
|
auto ctx = MakeCUDACtx(0);
|
||||||
|
std::size_t constexpr kBins = 64;
|
||||||
|
HistogramCuts cuts = common::DeviceSketch(&ctx, dmat.get(), kBins);
|
||||||
|
ASSERT_TRUE(cuts.HasCategorical());
|
||||||
|
}
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
void TestAllReduceBasic() {
|
void TestAllReduceBasic() {
|
||||||
auto const world = collective::GetWorldSize();
|
auto const world = collective::GetWorldSize();
|
||||||
@ -422,18 +447,14 @@ TEST_F(MGPUQuantileTest, AllReduceBasic) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
void TestColumnSplitBasic() {
|
void TestColumnSplit(DMatrix* dmat) {
|
||||||
auto const world = collective::GetWorldSize();
|
auto const world = collective::GetWorldSize();
|
||||||
auto const rank = collective::GetRank();
|
auto const rank = collective::GetRank();
|
||||||
std::size_t constexpr kRows = 1000, kCols = 100, kBins = 64;
|
auto m = std::unique_ptr<DMatrix>{dmat->SliceCol(world, rank)};
|
||||||
|
|
||||||
auto m = std::unique_ptr<DMatrix>{[=]() {
|
|
||||||
auto dmat = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
|
|
||||||
return dmat->SliceCol(world, rank);
|
|
||||||
}()};
|
|
||||||
|
|
||||||
// Generate cuts for distributed environment.
|
// Generate cuts for distributed environment.
|
||||||
auto ctx = MakeCUDACtx(GPUIDX);
|
auto ctx = MakeCUDACtx(GPUIDX);
|
||||||
|
std::size_t constexpr kBins = 64;
|
||||||
HistogramCuts distributed_cuts = common::DeviceSketch(&ctx, m.get(), kBins);
|
HistogramCuts distributed_cuts = common::DeviceSketch(&ctx, m.get(), kBins);
|
||||||
|
|
||||||
// Generate cuts for single node environment
|
// Generate cuts for single node environment
|
||||||
@ -466,7 +487,26 @@ void TestColumnSplitBasic() {
|
|||||||
} // anonymous namespace
|
} // anonymous namespace
|
||||||
|
|
||||||
TEST_F(MGPUQuantileTest, ColumnSplitBasic) {
|
TEST_F(MGPUQuantileTest, ColumnSplitBasic) {
|
||||||
DoTest(TestColumnSplitBasic);
|
std::size_t constexpr kRows = 1000, kCols = 100;
|
||||||
|
auto dmat = RandomDataGenerator{kRows, kCols, 0}.GenerateDMatrix();
|
||||||
|
DoTest(TestColumnSplit, dmat.get());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(MGPUQuantileTest, ColumnSplitCategorical) {
|
||||||
|
std::size_t constexpr kRows = 1000, kCols = 100;
|
||||||
|
auto sparsity = 0.5f;
|
||||||
|
std::vector<FeatureType> ft(kCols);
|
||||||
|
for (size_t i = 0; i < ft.size(); ++i) {
|
||||||
|
ft[i] = (i % 2 == 0) ? FeatureType::kNumerical : FeatureType::kCategorical;
|
||||||
|
}
|
||||||
|
auto dmat = RandomDataGenerator{kRows, kCols, sparsity}
|
||||||
|
.Seed(0)
|
||||||
|
.Lower(.0f)
|
||||||
|
.Upper(1.0f)
|
||||||
|
.Type(ft)
|
||||||
|
.MaxCategory(13)
|
||||||
|
.GenerateDMatrix();
|
||||||
|
DoTest(TestColumnSplit, dmat.get());
|
||||||
}
|
}
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user