[Breaking][jvm-packages] Use barrier execution mode (#7836)
With the introduction of the barrier execution mode. we don't need to kill SparkContext when some xgboost tasks failed. Instead, Spark will handle the errors for us. So in this PR, `killSparkContextOnWorkerFailure` parameter is deleted.
This commit is contained in:
parent
6ece549a90
commit
dc2e699656
@ -21,6 +21,7 @@ import java.io.File
|
||||
import scala.collection.mutable
|
||||
import scala.util.Random
|
||||
import scala.collection.JavaConverters._
|
||||
|
||||
import ml.dmlc.xgboost4j.java.{IRabitTracker, Rabit, XGBoostError, RabitTracker => PyRabitTracker}
|
||||
import ml.dmlc.xgboost4j.scala.rabit.RabitTracker
|
||||
import ml.dmlc.xgboost4j.scala.spark.params.LearningTaskParams
|
||||
@ -30,8 +31,9 @@ import ml.dmlc.xgboost4j.{LabeledPoint => XGBLabeledPoint}
|
||||
import org.apache.commons.io.FileUtils
|
||||
import org.apache.commons.logging.LogFactory
|
||||
import org.apache.hadoop.fs.FileSystem
|
||||
|
||||
import org.apache.spark.rdd.RDD
|
||||
import org.apache.spark.{SparkContext, SparkParallelismTracker, TaskContext}
|
||||
import org.apache.spark.{SparkContext, TaskContext}
|
||||
import org.apache.spark.sql.SparkSession
|
||||
|
||||
/**
|
||||
@ -79,8 +81,7 @@ private[scala] case class XGBoostExecutionParams(
|
||||
earlyStoppingParams: XGBoostExecutionEarlyStoppingParams,
|
||||
cacheTrainingSet: Boolean,
|
||||
treeMethod: Option[String],
|
||||
isLocal: Boolean,
|
||||
killSparkContextOnWorkerFailure: Boolean) {
|
||||
isLocal: Boolean) {
|
||||
|
||||
private var rawParamMap: Map[String, Any] = _
|
||||
|
||||
@ -224,9 +225,6 @@ private[this] class XGBoostExecutionParamsFactory(rawParams: Map[String, Any], s
|
||||
val cacheTrainingSet = overridedParams.getOrElse("cache_training_set", false)
|
||||
.asInstanceOf[Boolean]
|
||||
|
||||
val killSparkContext = overridedParams.getOrElse("kill_spark_context_on_worker_failure", true)
|
||||
.asInstanceOf[Boolean]
|
||||
|
||||
val xgbExecParam = XGBoostExecutionParams(nWorkers, round, useExternalMemory, obj, eval,
|
||||
missing, allowNonZeroForMissing, trackerConf,
|
||||
timeoutRequestWorkers,
|
||||
@ -235,8 +233,7 @@ private[this] class XGBoostExecutionParamsFactory(rawParams: Map[String, Any], s
|
||||
xgbExecEarlyStoppingParams,
|
||||
cacheTrainingSet,
|
||||
treeMethod,
|
||||
isLocal,
|
||||
killSparkContext)
|
||||
isLocal)
|
||||
xgbExecParam.setRawParamMap(overridedParams)
|
||||
xgbExecParam
|
||||
}
|
||||
@ -351,7 +348,11 @@ object XGBoost extends Serializable {
|
||||
watches.toMap, metrics, obj, eval,
|
||||
earlyStoppingRound = numEarlyStoppingRounds, prevBooster)
|
||||
}
|
||||
if (TaskContext.get().partitionId() == 0) {
|
||||
Iterator(booster -> watches.toMap.keys.zip(metrics).toMap)
|
||||
} else {
|
||||
Iterator.empty
|
||||
}
|
||||
} catch {
|
||||
case xgbException: XGBoostError =>
|
||||
logger.error(s"XGBooster worker $taskId has failed $attempt times due to ", xgbException)
|
||||
@ -409,15 +410,10 @@ object XGBoost extends Serializable {
|
||||
// Train for every ${savingRound} rounds and save the partially completed booster
|
||||
val tracker = startTracker(xgbExecParams.numWorkers, xgbExecParams.trackerConf)
|
||||
val (booster, metrics) = try {
|
||||
val parallelismTracker = new SparkParallelismTracker(sc,
|
||||
xgbExecParams.timeoutRequestWorkers,
|
||||
xgbExecParams.numWorkers,
|
||||
xgbExecParams.killSparkContextOnWorkerFailure)
|
||||
|
||||
tracker.getWorkerEnvs().putAll(xgbRabitParams)
|
||||
val rabitEnv = tracker.getWorkerEnvs
|
||||
|
||||
val boostersAndMetrics = trainingRDD.mapPartitions { iter => {
|
||||
val boostersAndMetrics = trainingRDD.barrier().mapPartitions { iter => {
|
||||
var optionWatches: Option[() => Watches] = None
|
||||
|
||||
// take the first Watches to train
|
||||
@ -430,24 +426,14 @@ object XGBoost extends Serializable {
|
||||
xgbExecParams.eval, prevBooster)}
|
||||
.getOrElse(throw new RuntimeException("No Watches to train"))
|
||||
|
||||
}}.cache()
|
||||
|
||||
val sparkJobThread = new Thread() {
|
||||
override def run() {
|
||||
// force the job
|
||||
boostersAndMetrics.foreachPartition(() => _)
|
||||
}
|
||||
}
|
||||
sparkJobThread.setUncaughtExceptionHandler(tracker)
|
||||
|
||||
val trackerReturnVal = parallelismTracker.execute {
|
||||
sparkJobThread.start()
|
||||
tracker.waitFor(0L)
|
||||
}
|
||||
}}
|
||||
|
||||
val (booster, metrics) = boostersAndMetrics.collect()(0)
|
||||
val trackerReturnVal = tracker.waitFor(0L)
|
||||
logger.info(s"Rabit returns with exit code $trackerReturnVal")
|
||||
val (booster, metrics) = postTrackerReturnProcessing(trackerReturnVal,
|
||||
boostersAndMetrics, sparkJobThread)
|
||||
if (trackerReturnVal != 0) {
|
||||
throw new XGBoostError("XGBoostModel training failed.")
|
||||
}
|
||||
(booster, metrics)
|
||||
} finally {
|
||||
tracker.stop()
|
||||
@ -467,42 +453,12 @@ object XGBoost extends Serializable {
|
||||
case t: Throwable =>
|
||||
// if the job was aborted due to an exception
|
||||
logger.error("the job was aborted due to ", t)
|
||||
if (xgbExecParams.killSparkContextOnWorkerFailure) {
|
||||
sc.stop()
|
||||
}
|
||||
throw t
|
||||
} finally {
|
||||
optionalCachedRDD.foreach(_.unpersist())
|
||||
}
|
||||
}
|
||||
|
||||
private def postTrackerReturnProcessing(
|
||||
trackerReturnVal: Int,
|
||||
distributedBoostersAndMetrics: RDD[(Booster, Map[String, Array[Float]])],
|
||||
sparkJobThread: Thread): (Booster, Map[String, Array[Float]]) = {
|
||||
if (trackerReturnVal == 0) {
|
||||
// Copies of the final booster and the corresponding metrics
|
||||
// reside in each partition of the `distributedBoostersAndMetrics`.
|
||||
// Any of them can be used to create the model.
|
||||
// it's safe to block here forever, as the tracker has returned successfully, and the Spark
|
||||
// job should have finished, there is no reason for the thread cannot return
|
||||
sparkJobThread.join()
|
||||
val (booster, metrics) = distributedBoostersAndMetrics.first()
|
||||
distributedBoostersAndMetrics.unpersist(false)
|
||||
(booster, metrics)
|
||||
} else {
|
||||
try {
|
||||
if (sparkJobThread.isAlive) {
|
||||
sparkJobThread.interrupt()
|
||||
}
|
||||
} catch {
|
||||
case _: InterruptedException =>
|
||||
logger.info("spark job thread is interrupted")
|
||||
}
|
||||
throw new XGBoostError("XGBoostModel training failed")
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
class Watches private[scala] (
|
||||
|
||||
@ -105,14 +105,8 @@ private[spark] trait LearningTaskParams extends Params {
|
||||
|
||||
final def getMaximizeEvaluationMetrics: Boolean = $(maximizeEvaluationMetrics)
|
||||
|
||||
/**
|
||||
* whether killing SparkContext when training task fails
|
||||
*/
|
||||
final val killSparkContextOnWorkerFailure = new BooleanParam(this,
|
||||
"killSparkContextOnWorkerFailure", "whether killing SparkContext when training task fails")
|
||||
|
||||
setDefault(objective -> "reg:squarederror", baseScore -> 0.5, trainTestRatio -> 1.0,
|
||||
numEarlyStoppingRounds -> 0, cacheTrainingSet -> false, killSparkContextOnWorkerFailure -> true)
|
||||
numEarlyStoppingRounds -> 0, cacheTrainingSet -> false)
|
||||
}
|
||||
|
||||
private[spark] object LearningTaskParams {
|
||||
|
||||
@ -1,175 +0,0 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.spark
|
||||
|
||||
import org.apache.commons.logging.LogFactory
|
||||
import org.apache.spark.scheduler._
|
||||
|
||||
import scala.collection.mutable.{HashMap, HashSet}
|
||||
|
||||
/**
|
||||
* A tracker that ensures enough number of executor cores are alive.
|
||||
* Throws an exception when the number of alive cores is less than nWorkers.
|
||||
*
|
||||
* @param sc The SparkContext object
|
||||
* @param timeout The maximum time to wait for enough number of workers.
|
||||
* @param numWorkers nWorkers used in an XGBoost Job
|
||||
* @param killSparkContextOnWorkerFailure kill SparkContext or not when task fails
|
||||
*/
|
||||
class SparkParallelismTracker(
|
||||
val sc: SparkContext,
|
||||
timeout: Long,
|
||||
numWorkers: Int,
|
||||
killSparkContextOnWorkerFailure: Boolean = true) {
|
||||
|
||||
private[this] val requestedCores = numWorkers * sc.conf.getInt("spark.task.cpus", 1)
|
||||
private[this] val logger = LogFactory.getLog("XGBoostSpark")
|
||||
|
||||
private[this] def numAliveCores: Int = {
|
||||
sc.statusStore.executorList(true).map(_.totalCores).sum
|
||||
}
|
||||
|
||||
private[this] def waitForCondition(
|
||||
condition: => Boolean,
|
||||
timeout: Long,
|
||||
checkInterval: Long = 100L) = {
|
||||
val waitImpl = new ((Long, Boolean) => Boolean) {
|
||||
override def apply(waitedTime: Long, status: Boolean): Boolean = status match {
|
||||
case s if s => true
|
||||
case _ => waitedTime match {
|
||||
case t if t < timeout =>
|
||||
Thread.sleep(checkInterval)
|
||||
apply(t + checkInterval, status = condition)
|
||||
case _ => false
|
||||
}
|
||||
}
|
||||
}
|
||||
waitImpl(0L, condition)
|
||||
}
|
||||
|
||||
private[this] def safeExecute[T](body: => T): T = {
|
||||
val listener = new TaskFailedListener(killSparkContextOnWorkerFailure)
|
||||
sc.addSparkListener(listener)
|
||||
try {
|
||||
body
|
||||
} finally {
|
||||
sc.removeSparkListener(listener)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Execute a blocking function call with two checks on enough nWorkers:
|
||||
* - Before the function starts, wait until there are enough executor cores.
|
||||
* - During the execution, throws an exception if there is any executor lost.
|
||||
*
|
||||
* @param body A blocking function call
|
||||
* @tparam T Return type
|
||||
* @return The return of body
|
||||
*/
|
||||
def execute[T](body: => T): T = {
|
||||
if (timeout <= 0) {
|
||||
logger.info("starting training without setting timeout for waiting for resources")
|
||||
safeExecute(body)
|
||||
} else {
|
||||
logger.info(s"starting training with timeout set as $timeout ms for waiting for resources")
|
||||
if (!waitForCondition(numAliveCores >= requestedCores, timeout)) {
|
||||
throw new IllegalStateException(s"Unable to get $requestedCores cores for XGBoost training")
|
||||
}
|
||||
safeExecute(body)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
class TaskFailedListener(killSparkContext: Boolean = true) extends SparkListener {
|
||||
|
||||
private[this] val logger = LogFactory.getLog("XGBoostTaskFailedListener")
|
||||
|
||||
// {jobId, [stageId0, stageId1, ...] }
|
||||
// keep track of the mapping of job id and stage ids
|
||||
// when a task fails, find the job id and stage id the task belongs to, finally
|
||||
// cancel the jobs
|
||||
private val jobIdToStageIds: HashMap[Int, HashSet[Int]] = HashMap.empty
|
||||
|
||||
override def onJobStart(jobStart: SparkListenerJobStart): Unit = {
|
||||
if (!killSparkContext) {
|
||||
jobStart.stageIds.foreach(stageId => {
|
||||
jobIdToStageIds.getOrElseUpdate(jobStart.jobId, new HashSet[Int]()) += stageId
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
override def onJobEnd(jobEnd: SparkListenerJobEnd): Unit = {
|
||||
if (!killSparkContext) {
|
||||
jobIdToStageIds.remove(jobEnd.jobId)
|
||||
}
|
||||
}
|
||||
|
||||
override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = {
|
||||
taskEnd.reason match {
|
||||
case taskEndReason: TaskFailedReason =>
|
||||
logger.error(s"Training Task Failed during XGBoost Training: " +
|
||||
s"$taskEndReason")
|
||||
if (killSparkContext) {
|
||||
logger.error("killing SparkContext")
|
||||
TaskFailedListener.startedSparkContextKiller()
|
||||
} else {
|
||||
val stageId = taskEnd.stageId
|
||||
// find job ids according to stage id and then cancel the job
|
||||
|
||||
jobIdToStageIds.foreach {
|
||||
case (jobId, stageIds) =>
|
||||
if (stageIds.contains(stageId)) {
|
||||
logger.error("Cancelling jobId:" + jobId)
|
||||
jobIdToStageIds.remove(jobId)
|
||||
SparkContext.getOrCreate().cancelJob(jobId)
|
||||
}
|
||||
}
|
||||
}
|
||||
case _ =>
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
object TaskFailedListener {
|
||||
|
||||
var killerStarted: Boolean = false
|
||||
|
||||
var sparkContextKiller: Thread = _
|
||||
|
||||
val sparkContextShutdownLock = new AnyRef
|
||||
|
||||
private def startedSparkContextKiller(): Unit = this.synchronized {
|
||||
if (!killerStarted) {
|
||||
killerStarted = true
|
||||
// Spark does not allow ListenerThread to shutdown SparkContext so that we have to do it
|
||||
// in a separate thread
|
||||
sparkContextKiller = new Thread() {
|
||||
override def run(): Unit = {
|
||||
LiveListenerBus.withinListenerThread.withValue(false) {
|
||||
sparkContextShutdownLock.synchronized {
|
||||
SparkContext.getActive.foreach(_.stop())
|
||||
killerStarted = false
|
||||
sparkContextShutdownLock.notify()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
sparkContextKiller.setDaemon(true)
|
||||
sparkContextKiller.start()
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
Copyright (c) 2014-2022 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@ -19,7 +19,7 @@ package ml.dmlc.xgboost4j.scala.spark
|
||||
import java.io.File
|
||||
|
||||
import ml.dmlc.xgboost4j.scala.{Booster, DMatrix, ExternalCheckpointManager, XGBoost => SXGBoost}
|
||||
import org.scalatest.{FunSuite, Ignore}
|
||||
import org.scalatest.FunSuite
|
||||
import org.apache.hadoop.fs.{FileSystem, Path}
|
||||
|
||||
class ExternalCheckpointManagerSuite extends FunSuite with TmpFolderPerSuite with PerTest {
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
Copyright (c) 2014-2022 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@ -16,10 +16,8 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import ml.dmlc.xgboost4j.java.XGBoostError
|
||||
import org.apache.spark.Partitioner
|
||||
import org.apache.spark.ml.feature.VectorAssembler
|
||||
import org.apache.spark.sql.SparkSession
|
||||
import org.scalatest.FunSuite
|
||||
import org.apache.spark.sql.functions._
|
||||
|
||||
@ -53,7 +51,7 @@ class FeatureSizeValidatingSuite extends FunSuite with PerTest {
|
||||
"objective" -> "binary:logistic",
|
||||
"num_round" -> 5, "num_workers" -> 2, "use_external_memory" -> true, "missing" -> 0)
|
||||
import DataUtils._
|
||||
val sparkSession = SparkSession.builder().getOrCreate()
|
||||
val sparkSession = ss
|
||||
import sparkSession.implicits._
|
||||
val repartitioned = sc.parallelize(Synthetic.trainWithDiffFeatureSize, 2)
|
||||
.map(lp => (lp.label, lp)).partitionBy(
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
Copyright (c) 2014-2022 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@ -16,14 +16,14 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import ml.dmlc.xgboost4j.java.XGBoostError
|
||||
import org.apache.spark.ml.feature.VectorAssembler
|
||||
import org.apache.spark.ml.linalg.Vectors
|
||||
import org.apache.spark.sql.DataFrame
|
||||
import org.scalatest.FunSuite
|
||||
|
||||
import scala.util.Random
|
||||
|
||||
import org.apache.spark.SparkException
|
||||
|
||||
class MissingValueHandlingSuite extends FunSuite with PerTest {
|
||||
test("dense vectors containing missing value") {
|
||||
def buildDenseDataFrame(): DataFrame = {
|
||||
@ -113,7 +113,7 @@ class MissingValueHandlingSuite extends FunSuite with PerTest {
|
||||
val inputDF = vectorAssembler.transform(testDF).select("features", "label")
|
||||
val paramMap = List("eta" -> "1", "max_depth" -> "2",
|
||||
"objective" -> "binary:logistic", "missing" -> -1.0f, "num_workers" -> 1).toMap
|
||||
intercept[XGBoostError] {
|
||||
intercept[SparkException] {
|
||||
new XGBoostClassifier(paramMap).fit(inputDF)
|
||||
}
|
||||
}
|
||||
@ -140,7 +140,7 @@ class MissingValueHandlingSuite extends FunSuite with PerTest {
|
||||
inputDF.show()
|
||||
val paramMap = List("eta" -> "1", "max_depth" -> "2",
|
||||
"objective" -> "binary:logistic", "missing" -> -1.0f, "num_workers" -> 1).toMap
|
||||
intercept[XGBoostError] {
|
||||
intercept[SparkException] {
|
||||
new XGBoostClassifier(paramMap).fit(inputDF)
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
Copyright (c) 2014-2022 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@ -16,9 +16,9 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import ml.dmlc.xgboost4j.java.XGBoostError
|
||||
import org.scalatest.{BeforeAndAfterAll, FunSuite, Ignore}
|
||||
import org.scalatest.{BeforeAndAfterAll, FunSuite}
|
||||
|
||||
import org.apache.spark.SparkException
|
||||
import org.apache.spark.ml.param.ParamMap
|
||||
|
||||
class ParameterSuite extends FunSuite with PerTest with BeforeAndAfterAll {
|
||||
@ -40,28 +40,16 @@ class ParameterSuite extends FunSuite with PerTest with BeforeAndAfterAll {
|
||||
assert(xgbCopy2.MLlib2XGBoostParams("eval_metric").toString === "logloss")
|
||||
}
|
||||
|
||||
private def waitForSparkContextShutdown(): Unit = {
|
||||
var totalWaitedTime = 0L
|
||||
while (!ss.sparkContext.isStopped && totalWaitedTime <= 120000) {
|
||||
Thread.sleep(10000)
|
||||
totalWaitedTime += 10000
|
||||
}
|
||||
assert(ss.sparkContext.isStopped === true)
|
||||
}
|
||||
|
||||
test("fail training elegantly with unsupported objective function") {
|
||||
val paramMap = Map("eta" -> "0.1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "wrong_objective_function", "num_class" -> "6", "num_round" -> 5,
|
||||
"num_workers" -> numWorkers)
|
||||
val trainingDF = buildDataFrame(MultiClassification.train)
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
try {
|
||||
val model = xgb.fit(trainingDF)
|
||||
} catch {
|
||||
case e: Throwable => // swallow anything
|
||||
} finally {
|
||||
waitForSparkContextShutdown()
|
||||
intercept[SparkException] {
|
||||
xgb.fit(trainingDF)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
test("fail training elegantly with unsupported eval metrics") {
|
||||
@ -70,12 +58,8 @@ class ParameterSuite extends FunSuite with PerTest with BeforeAndAfterAll {
|
||||
"num_workers" -> numWorkers, "eval_metric" -> "wrong_eval_metrics")
|
||||
val trainingDF = buildDataFrame(MultiClassification.train)
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
try {
|
||||
val model = xgb.fit(trainingDF)
|
||||
} catch {
|
||||
case e: Throwable => // swallow anything
|
||||
} finally {
|
||||
waitForSparkContextShutdown()
|
||||
intercept[SparkException] {
|
||||
xgb.fit(trainingDF)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
Copyright (c) 2014-2022 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@ -19,7 +19,7 @@ package ml.dmlc.xgboost4j.scala.spark
|
||||
import java.io.File
|
||||
|
||||
import ml.dmlc.xgboost4j.{LabeledPoint => XGBLabeledPoint}
|
||||
import org.apache.spark.{SparkConf, SparkContext, TaskFailedListener}
|
||||
import org.apache.spark.SparkContext
|
||||
import org.apache.spark.sql._
|
||||
import org.scalatest.{BeforeAndAfterEach, FunSuite}
|
||||
|
||||
@ -40,33 +40,17 @@ trait PerTest extends BeforeAndAfterEach { self: FunSuite =>
|
||||
.appName("XGBoostSuite")
|
||||
.config("spark.ui.enabled", false)
|
||||
.config("spark.driver.memory", "512m")
|
||||
.config("spark.barrier.sync.timeout", 10)
|
||||
.config("spark.task.cpus", 1)
|
||||
|
||||
override def beforeEach(): Unit = getOrCreateSession
|
||||
|
||||
override def afterEach() {
|
||||
TaskFailedListener.sparkContextShutdownLock.synchronized {
|
||||
if (currentSession != null) {
|
||||
// this synchronization is mostly for the tests involving SparkContext shutdown
|
||||
// for unit test involving the sparkContext shutdown there are two different events sequence
|
||||
// 1. SparkContext killer is executed before afterEach, in this case, before SparkContext
|
||||
// is fully stopped, afterEach() will block at the following code block
|
||||
// 2. SparkContext killer is executed afterEach, in this case, currentSession.stop() in will
|
||||
// block to wait for all msgs in ListenerBus get processed. Because currentSession.stop()
|
||||
// has been called, SparkContext killer will not take effect
|
||||
while (TaskFailedListener.killerStarted) {
|
||||
TaskFailedListener.sparkContextShutdownLock.wait()
|
||||
}
|
||||
currentSession.stop()
|
||||
cleanExternalCache(currentSession.sparkContext.appName)
|
||||
currentSession = null
|
||||
}
|
||||
if (TaskFailedListener.sparkContextKiller != null) {
|
||||
TaskFailedListener.sparkContextKiller.interrupt()
|
||||
TaskFailedListener.sparkContextKiller = null
|
||||
}
|
||||
TaskFailedListener.killerStarted = false
|
||||
}
|
||||
}
|
||||
|
||||
private def getOrCreateSession = synchronized {
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright (c) 2014,2021 by Contributors
|
||||
Copyright (c) 2014-2022 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
Copyright (c) 2014-2022 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@ -16,10 +16,8 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import ml.dmlc.xgboost4j.java.Rabit
|
||||
import ml.dmlc.xgboost4j.scala.{Booster, DMatrix}
|
||||
|
||||
import scala.collection.JavaConverters._
|
||||
import org.apache.spark.sql._
|
||||
import org.scalatest.FunSuite
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
Copyright (c) 2014-2022 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@ -16,13 +16,12 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import ml.dmlc.xgboost4j.java.XGBoostError
|
||||
import scala.util.Random
|
||||
|
||||
import ml.dmlc.xgboost4j.{LabeledPoint => XGBLabeledPoint}
|
||||
import ml.dmlc.xgboost4j.scala.DMatrix
|
||||
|
||||
import org.apache.spark.TaskContext
|
||||
import org.apache.spark.{SparkException, TaskContext}
|
||||
import org.scalatest.FunSuite
|
||||
|
||||
import org.apache.spark.ml.feature.VectorAssembler
|
||||
@ -375,13 +374,14 @@ class XGBoostGeneralSuite extends FunSuite with TmpFolderPerSuite with PerTest {
|
||||
|
||||
test("throw exception for empty partition in trainingset") {
|
||||
val paramMap = Map("eta" -> "0.1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "multi:softmax", "num_class" -> "2", "num_round" -> 5,
|
||||
"num_workers" -> numWorkers, "tree_method" -> "auto")
|
||||
"objective" -> "binary:logistic", "num_class" -> "2", "num_round" -> 5,
|
||||
"num_workers" -> numWorkers, "tree_method" -> "auto", "allow_non_zero_for_missing" -> true)
|
||||
// The Dmatrix will be empty
|
||||
val trainingDF = buildDataFrame(Seq(XGBLabeledPoint(1.0f, 1, Array(), Array())))
|
||||
val trainingDF = buildDataFrame(Seq(XGBLabeledPoint(1.0f, 4,
|
||||
Array(0, 1, 2, 3), Array(0, 1, 2, 3))))
|
||||
val xgb = new XGBoostClassifier(paramMap)
|
||||
intercept[XGBoostError] {
|
||||
val model = xgb.fit(trainingDF)
|
||||
intercept[SparkException] {
|
||||
xgb.fit(trainingDF)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
Copyright (c) 2014-2022 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
@ -16,14 +16,15 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import ml.dmlc.xgboost4j.java.{Rabit, XGBoostError}
|
||||
import ml.dmlc.xgboost4j.scala.{Booster, DMatrix}
|
||||
import org.apache.spark.TaskFailedListener
|
||||
import org.apache.spark.SparkException
|
||||
import ml.dmlc.xgboost4j.java.Rabit
|
||||
import ml.dmlc.xgboost4j.scala.Booster
|
||||
import scala.collection.JavaConverters._
|
||||
|
||||
import org.apache.spark.sql._
|
||||
import org.scalatest.FunSuite
|
||||
|
||||
import org.apache.spark.SparkException
|
||||
|
||||
class XGBoostRabitRegressionSuite extends FunSuite with PerTest {
|
||||
val predictionErrorMin = 0.00001f
|
||||
val maxFailure = 2;
|
||||
@ -33,15 +34,6 @@ class XGBoostRabitRegressionSuite extends FunSuite with PerTest {
|
||||
.config("spark.kryo.classesToRegister", classOf[Booster].getName)
|
||||
.master(s"local[${numWorkers},${maxFailure}]")
|
||||
|
||||
private def waitAndCheckSparkShutdown(waitMiliSec: Int): Boolean = {
|
||||
var totalWaitedTime = 0L
|
||||
while (!ss.sparkContext.isStopped && totalWaitedTime <= waitMiliSec) {
|
||||
Thread.sleep(10)
|
||||
totalWaitedTime += 10
|
||||
}
|
||||
return ss.sparkContext.isStopped
|
||||
}
|
||||
|
||||
test("test classification prediction parity w/o ring reduce") {
|
||||
val training = buildDataFrame(Classification.train)
|
||||
val testDF = buildDataFrame(Classification.test)
|
||||
@ -91,14 +83,11 @@ class XGBoostRabitRegressionSuite extends FunSuite with PerTest {
|
||||
}
|
||||
|
||||
test("test rabit timeout fail handle") {
|
||||
// disable spark kill listener to verify if rabit_timeout take effect and kill tasks
|
||||
TaskFailedListener.killerStarted = true
|
||||
|
||||
val training = buildDataFrame(Classification.train)
|
||||
// mock rank 0 failure during 8th allreduce synchronization
|
||||
Rabit.mockList = Array("0,8,0,0").toList.asJava
|
||||
|
||||
try {
|
||||
intercept[SparkException] {
|
||||
new XGBoostClassifier(Map(
|
||||
"eta" -> "0.1",
|
||||
"max_depth" -> "10",
|
||||
@ -108,39 +97,7 @@ class XGBoostRabitRegressionSuite extends FunSuite with PerTest {
|
||||
"num_workers" -> numWorkers,
|
||||
"rabit_timeout" -> 0))
|
||||
.fit(training)
|
||||
} catch {
|
||||
case e: Throwable => // swallow anything
|
||||
} finally {
|
||||
// assume all tasks throw exception almost same time
|
||||
// 100ms should be enough to exhaust all retries
|
||||
assert(waitAndCheckSparkShutdown(100) == true)
|
||||
TaskFailedListener.killerStarted = false
|
||||
}
|
||||
}
|
||||
|
||||
test("test SparkContext should not be killed ") {
|
||||
cancel("For some reason, sparkContext can't cancel the job locally in the CI env," +
|
||||
"which will be resolved when introducing barrier mode")
|
||||
val training = buildDataFrame(Classification.train)
|
||||
// mock rank 0 failure during 8th allreduce synchronization
|
||||
Rabit.mockList = Array("0,8,0,0").toList.asJava
|
||||
|
||||
try {
|
||||
new XGBoostClassifier(Map(
|
||||
"eta" -> "0.1",
|
||||
"max_depth" -> "10",
|
||||
"verbosity" -> "1",
|
||||
"objective" -> "binary:logistic",
|
||||
"num_round" -> 5,
|
||||
"num_workers" -> numWorkers,
|
||||
"kill_spark_context_on_worker_failure" -> false,
|
||||
"rabit_timeout" -> 0))
|
||||
.fit(training)
|
||||
} catch {
|
||||
case e: Throwable => // swallow anything
|
||||
} finally {
|
||||
// wait 3s to check if SparkContext is killed
|
||||
assert(waitAndCheckSparkShutdown(3000) == false)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -21,7 +21,6 @@ import ml.dmlc.xgboost4j.scala.{DMatrix, XGBoost => ScalaXGBoost}
|
||||
import org.apache.spark.ml.linalg.{Vector, Vectors}
|
||||
import org.apache.spark.sql.functions._
|
||||
import org.apache.spark.sql.{DataFrame, Row}
|
||||
import org.apache.spark.sql.types._
|
||||
import org.scalatest.FunSuite
|
||||
|
||||
import org.apache.spark.ml.feature.VectorAssembler
|
||||
|
||||
@ -1,151 +0,0 @@
|
||||
/*
|
||||
Copyright (c) 2014 by Contributors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
*/
|
||||
|
||||
package org.apache.spark
|
||||
|
||||
import org.scalatest.FunSuite
|
||||
import _root_.ml.dmlc.xgboost4j.scala.spark.PerTest
|
||||
import org.apache.spark.rdd.RDD
|
||||
import org.apache.spark.sql.SparkSession
|
||||
|
||||
import scala.math.min
|
||||
|
||||
class SparkParallelismTrackerSuite extends FunSuite with PerTest {
|
||||
|
||||
val numParallelism: Int = min(Runtime.getRuntime.availableProcessors(), 4)
|
||||
|
||||
override protected def sparkSessionBuilder: SparkSession.Builder = SparkSession.builder()
|
||||
.master(s"local[${numParallelism}]")
|
||||
.appName("XGBoostSuite")
|
||||
.config("spark.ui.enabled", true)
|
||||
.config("spark.driver.memory", "512m")
|
||||
.config("spark.task.cpus", 1)
|
||||
|
||||
private def waitAndCheckSparkShutdown(waitMiliSec: Int): Boolean = {
|
||||
var totalWaitedTime = 0L
|
||||
while (!ss.sparkContext.isStopped && totalWaitedTime <= waitMiliSec) {
|
||||
Thread.sleep(100)
|
||||
totalWaitedTime += 100
|
||||
}
|
||||
ss.sparkContext.isStopped
|
||||
}
|
||||
|
||||
test("tracker should not affect execution result when timeout is not larger than 0") {
|
||||
val nWorkers = numParallelism
|
||||
val rdd: RDD[Int] = sc.parallelize(1 to nWorkers)
|
||||
val tracker = new SparkParallelismTracker(sc, 10000, nWorkers)
|
||||
val disabledTracker = new SparkParallelismTracker(sc, 0, nWorkers)
|
||||
assert(tracker.execute(rdd.sum()) == rdd.sum())
|
||||
assert(disabledTracker.execute(rdd.sum()) == rdd.sum())
|
||||
}
|
||||
|
||||
test("tracker should throw exception if parallelism is not sufficient") {
|
||||
val nWorkers = numParallelism * 3
|
||||
val rdd: RDD[Int] = sc.parallelize(1 to nWorkers)
|
||||
val tracker = new SparkParallelismTracker(sc, 1000, nWorkers)
|
||||
intercept[IllegalStateException] {
|
||||
tracker.execute {
|
||||
rdd.map { i =>
|
||||
// Test interruption
|
||||
Thread.sleep(Long.MaxValue)
|
||||
i
|
||||
}.sum()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
test("tracker should throw exception if parallelism is not sufficient with" +
|
||||
" spark.task.cpus larger than 1") {
|
||||
sc.conf.set("spark.task.cpus", "2")
|
||||
val nWorkers = numParallelism
|
||||
val rdd: RDD[Int] = sc.parallelize(1 to nWorkers)
|
||||
val tracker = new SparkParallelismTracker(sc, 1000, nWorkers)
|
||||
intercept[IllegalStateException] {
|
||||
tracker.execute {
|
||||
rdd.map { i =>
|
||||
// Test interruption
|
||||
Thread.sleep(Long.MaxValue)
|
||||
i
|
||||
}.sum()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
test("tracker should not kill SparkContext when killSparkContextOnWorkerFailure=false") {
|
||||
val nWorkers = numParallelism
|
||||
val tracker = new SparkParallelismTracker(sc, 0, nWorkers, false)
|
||||
val rdd: RDD[Int] = sc.parallelize(1 to nWorkers, nWorkers)
|
||||
try {
|
||||
tracker.execute {
|
||||
rdd.map { i =>
|
||||
val partitionId = TaskContext.get().partitionId()
|
||||
if (partitionId == 0) {
|
||||
throw new RuntimeException("mocking task failing")
|
||||
}
|
||||
i
|
||||
}.sum()
|
||||
}
|
||||
} catch {
|
||||
case e: Exception => // catch the exception
|
||||
} finally {
|
||||
// wait 3s to check if SparkContext is killed
|
||||
assert(waitAndCheckSparkShutdown(3000) == false)
|
||||
}
|
||||
}
|
||||
|
||||
test("tracker should cancel the correct job when killSparkContextOnWorkerFailure=false") {
|
||||
val nWorkers = 2
|
||||
val tracker = new SparkParallelismTracker(sc, 0, nWorkers, false)
|
||||
val rdd: RDD[Int] = sc.parallelize(1 to 10, nWorkers)
|
||||
val thread = new TestThread(sc)
|
||||
thread.start()
|
||||
try {
|
||||
tracker.execute {
|
||||
rdd.map { i =>
|
||||
Thread.sleep(100)
|
||||
val partitionId = TaskContext.get().partitionId()
|
||||
if (partitionId == 0) {
|
||||
throw new RuntimeException("mocking task failing")
|
||||
}
|
||||
i
|
||||
}.sum()
|
||||
}
|
||||
} catch {
|
||||
case e: Exception => // catch the exception
|
||||
} finally {
|
||||
thread.join(8000)
|
||||
// wait 3s to check if SparkContext is killed
|
||||
assert(waitAndCheckSparkShutdown(3000) == false)
|
||||
}
|
||||
}
|
||||
|
||||
private[this] class TestThread(sc: SparkContext) extends Thread {
|
||||
override def run(): Unit = {
|
||||
var sum: Double = 0.0f
|
||||
try {
|
||||
val rdd = sc.parallelize(1 to 4, 2)
|
||||
sum = rdd.mapPartitions(iter => {
|
||||
// sleep 2s to ensure task is alive when cancelling other jobs
|
||||
Thread.sleep(2000)
|
||||
iter
|
||||
}).sum()
|
||||
} finally {
|
||||
// get the correct result
|
||||
assert(sum.toInt == 10)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user