[Breaking][jvm-packages] Use barrier execution mode (#7836)

With the introduction of the barrier execution mode. we don't need to kill SparkContext when some xgboost tasks failed. Instead, Spark will handle the errors for us. So in this PR, `killSparkContextOnWorkerFailure` parameter is deleted.
This commit is contained in:
Bobby Wang 2022-04-25 17:09:52 +08:00 committed by GitHub
parent 6ece549a90
commit dc2e699656
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 60 additions and 516 deletions

View File

@ -21,6 +21,7 @@ import java.io.File
import scala.collection.mutable
import scala.util.Random
import scala.collection.JavaConverters._
import ml.dmlc.xgboost4j.java.{IRabitTracker, Rabit, XGBoostError, RabitTracker => PyRabitTracker}
import ml.dmlc.xgboost4j.scala.rabit.RabitTracker
import ml.dmlc.xgboost4j.scala.spark.params.LearningTaskParams
@ -30,8 +31,9 @@ import ml.dmlc.xgboost4j.{LabeledPoint => XGBLabeledPoint}
import org.apache.commons.io.FileUtils
import org.apache.commons.logging.LogFactory
import org.apache.hadoop.fs.FileSystem
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkContext, SparkParallelismTracker, TaskContext}
import org.apache.spark.{SparkContext, TaskContext}
import org.apache.spark.sql.SparkSession
/**
@ -79,8 +81,7 @@ private[scala] case class XGBoostExecutionParams(
earlyStoppingParams: XGBoostExecutionEarlyStoppingParams,
cacheTrainingSet: Boolean,
treeMethod: Option[String],
isLocal: Boolean,
killSparkContextOnWorkerFailure: Boolean) {
isLocal: Boolean) {
private var rawParamMap: Map[String, Any] = _
@ -224,9 +225,6 @@ private[this] class XGBoostExecutionParamsFactory(rawParams: Map[String, Any], s
val cacheTrainingSet = overridedParams.getOrElse("cache_training_set", false)
.asInstanceOf[Boolean]
val killSparkContext = overridedParams.getOrElse("kill_spark_context_on_worker_failure", true)
.asInstanceOf[Boolean]
val xgbExecParam = XGBoostExecutionParams(nWorkers, round, useExternalMemory, obj, eval,
missing, allowNonZeroForMissing, trackerConf,
timeoutRequestWorkers,
@ -235,8 +233,7 @@ private[this] class XGBoostExecutionParamsFactory(rawParams: Map[String, Any], s
xgbExecEarlyStoppingParams,
cacheTrainingSet,
treeMethod,
isLocal,
killSparkContext)
isLocal)
xgbExecParam.setRawParamMap(overridedParams)
xgbExecParam
}
@ -351,7 +348,11 @@ object XGBoost extends Serializable {
watches.toMap, metrics, obj, eval,
earlyStoppingRound = numEarlyStoppingRounds, prevBooster)
}
if (TaskContext.get().partitionId() == 0) {
Iterator(booster -> watches.toMap.keys.zip(metrics).toMap)
} else {
Iterator.empty
}
} catch {
case xgbException: XGBoostError =>
logger.error(s"XGBooster worker $taskId has failed $attempt times due to ", xgbException)
@ -409,15 +410,10 @@ object XGBoost extends Serializable {
// Train for every ${savingRound} rounds and save the partially completed booster
val tracker = startTracker(xgbExecParams.numWorkers, xgbExecParams.trackerConf)
val (booster, metrics) = try {
val parallelismTracker = new SparkParallelismTracker(sc,
xgbExecParams.timeoutRequestWorkers,
xgbExecParams.numWorkers,
xgbExecParams.killSparkContextOnWorkerFailure)
tracker.getWorkerEnvs().putAll(xgbRabitParams)
val rabitEnv = tracker.getWorkerEnvs
val boostersAndMetrics = trainingRDD.mapPartitions { iter => {
val boostersAndMetrics = trainingRDD.barrier().mapPartitions { iter => {
var optionWatches: Option[() => Watches] = None
// take the first Watches to train
@ -430,24 +426,14 @@ object XGBoost extends Serializable {
xgbExecParams.eval, prevBooster)}
.getOrElse(throw new RuntimeException("No Watches to train"))
}}.cache()
val sparkJobThread = new Thread() {
override def run() {
// force the job
boostersAndMetrics.foreachPartition(() => _)
}
}
sparkJobThread.setUncaughtExceptionHandler(tracker)
val trackerReturnVal = parallelismTracker.execute {
sparkJobThread.start()
tracker.waitFor(0L)
}
}}
val (booster, metrics) = boostersAndMetrics.collect()(0)
val trackerReturnVal = tracker.waitFor(0L)
logger.info(s"Rabit returns with exit code $trackerReturnVal")
val (booster, metrics) = postTrackerReturnProcessing(trackerReturnVal,
boostersAndMetrics, sparkJobThread)
if (trackerReturnVal != 0) {
throw new XGBoostError("XGBoostModel training failed.")
}
(booster, metrics)
} finally {
tracker.stop()
@ -467,42 +453,12 @@ object XGBoost extends Serializable {
case t: Throwable =>
// if the job was aborted due to an exception
logger.error("the job was aborted due to ", t)
if (xgbExecParams.killSparkContextOnWorkerFailure) {
sc.stop()
}
throw t
} finally {
optionalCachedRDD.foreach(_.unpersist())
}
}
private def postTrackerReturnProcessing(
trackerReturnVal: Int,
distributedBoostersAndMetrics: RDD[(Booster, Map[String, Array[Float]])],
sparkJobThread: Thread): (Booster, Map[String, Array[Float]]) = {
if (trackerReturnVal == 0) {
// Copies of the final booster and the corresponding metrics
// reside in each partition of the `distributedBoostersAndMetrics`.
// Any of them can be used to create the model.
// it's safe to block here forever, as the tracker has returned successfully, and the Spark
// job should have finished, there is no reason for the thread cannot return
sparkJobThread.join()
val (booster, metrics) = distributedBoostersAndMetrics.first()
distributedBoostersAndMetrics.unpersist(false)
(booster, metrics)
} else {
try {
if (sparkJobThread.isAlive) {
sparkJobThread.interrupt()
}
} catch {
case _: InterruptedException =>
logger.info("spark job thread is interrupted")
}
throw new XGBoostError("XGBoostModel training failed")
}
}
}
class Watches private[scala] (

View File

@ -105,14 +105,8 @@ private[spark] trait LearningTaskParams extends Params {
final def getMaximizeEvaluationMetrics: Boolean = $(maximizeEvaluationMetrics)
/**
* whether killing SparkContext when training task fails
*/
final val killSparkContextOnWorkerFailure = new BooleanParam(this,
"killSparkContextOnWorkerFailure", "whether killing SparkContext when training task fails")
setDefault(objective -> "reg:squarederror", baseScore -> 0.5, trainTestRatio -> 1.0,
numEarlyStoppingRounds -> 0, cacheTrainingSet -> false, killSparkContextOnWorkerFailure -> true)
numEarlyStoppingRounds -> 0, cacheTrainingSet -> false)
}
private[spark] object LearningTaskParams {

View File

@ -1,175 +0,0 @@
/*
Copyright (c) 2014 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package org.apache.spark
import org.apache.commons.logging.LogFactory
import org.apache.spark.scheduler._
import scala.collection.mutable.{HashMap, HashSet}
/**
* A tracker that ensures enough number of executor cores are alive.
* Throws an exception when the number of alive cores is less than nWorkers.
*
* @param sc The SparkContext object
* @param timeout The maximum time to wait for enough number of workers.
* @param numWorkers nWorkers used in an XGBoost Job
* @param killSparkContextOnWorkerFailure kill SparkContext or not when task fails
*/
class SparkParallelismTracker(
val sc: SparkContext,
timeout: Long,
numWorkers: Int,
killSparkContextOnWorkerFailure: Boolean = true) {
private[this] val requestedCores = numWorkers * sc.conf.getInt("spark.task.cpus", 1)
private[this] val logger = LogFactory.getLog("XGBoostSpark")
private[this] def numAliveCores: Int = {
sc.statusStore.executorList(true).map(_.totalCores).sum
}
private[this] def waitForCondition(
condition: => Boolean,
timeout: Long,
checkInterval: Long = 100L) = {
val waitImpl = new ((Long, Boolean) => Boolean) {
override def apply(waitedTime: Long, status: Boolean): Boolean = status match {
case s if s => true
case _ => waitedTime match {
case t if t < timeout =>
Thread.sleep(checkInterval)
apply(t + checkInterval, status = condition)
case _ => false
}
}
}
waitImpl(0L, condition)
}
private[this] def safeExecute[T](body: => T): T = {
val listener = new TaskFailedListener(killSparkContextOnWorkerFailure)
sc.addSparkListener(listener)
try {
body
} finally {
sc.removeSparkListener(listener)
}
}
/**
* Execute a blocking function call with two checks on enough nWorkers:
* - Before the function starts, wait until there are enough executor cores.
* - During the execution, throws an exception if there is any executor lost.
*
* @param body A blocking function call
* @tparam T Return type
* @return The return of body
*/
def execute[T](body: => T): T = {
if (timeout <= 0) {
logger.info("starting training without setting timeout for waiting for resources")
safeExecute(body)
} else {
logger.info(s"starting training with timeout set as $timeout ms for waiting for resources")
if (!waitForCondition(numAliveCores >= requestedCores, timeout)) {
throw new IllegalStateException(s"Unable to get $requestedCores cores for XGBoost training")
}
safeExecute(body)
}
}
}
class TaskFailedListener(killSparkContext: Boolean = true) extends SparkListener {
private[this] val logger = LogFactory.getLog("XGBoostTaskFailedListener")
// {jobId, [stageId0, stageId1, ...] }
// keep track of the mapping of job id and stage ids
// when a task fails, find the job id and stage id the task belongs to, finally
// cancel the jobs
private val jobIdToStageIds: HashMap[Int, HashSet[Int]] = HashMap.empty
override def onJobStart(jobStart: SparkListenerJobStart): Unit = {
if (!killSparkContext) {
jobStart.stageIds.foreach(stageId => {
jobIdToStageIds.getOrElseUpdate(jobStart.jobId, new HashSet[Int]()) += stageId
})
}
}
override def onJobEnd(jobEnd: SparkListenerJobEnd): Unit = {
if (!killSparkContext) {
jobIdToStageIds.remove(jobEnd.jobId)
}
}
override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = {
taskEnd.reason match {
case taskEndReason: TaskFailedReason =>
logger.error(s"Training Task Failed during XGBoost Training: " +
s"$taskEndReason")
if (killSparkContext) {
logger.error("killing SparkContext")
TaskFailedListener.startedSparkContextKiller()
} else {
val stageId = taskEnd.stageId
// find job ids according to stage id and then cancel the job
jobIdToStageIds.foreach {
case (jobId, stageIds) =>
if (stageIds.contains(stageId)) {
logger.error("Cancelling jobId:" + jobId)
jobIdToStageIds.remove(jobId)
SparkContext.getOrCreate().cancelJob(jobId)
}
}
}
case _ =>
}
}
}
object TaskFailedListener {
var killerStarted: Boolean = false
var sparkContextKiller: Thread = _
val sparkContextShutdownLock = new AnyRef
private def startedSparkContextKiller(): Unit = this.synchronized {
if (!killerStarted) {
killerStarted = true
// Spark does not allow ListenerThread to shutdown SparkContext so that we have to do it
// in a separate thread
sparkContextKiller = new Thread() {
override def run(): Unit = {
LiveListenerBus.withinListenerThread.withValue(false) {
sparkContextShutdownLock.synchronized {
SparkContext.getActive.foreach(_.stop())
killerStarted = false
sparkContextShutdownLock.notify()
}
}
}
}
sparkContextKiller.setDaemon(true)
sparkContextKiller.start()
}
}
}

View File

@ -1,5 +1,5 @@
/*
Copyright (c) 2014 by Contributors
Copyright (c) 2014-2022 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -19,7 +19,7 @@ package ml.dmlc.xgboost4j.scala.spark
import java.io.File
import ml.dmlc.xgboost4j.scala.{Booster, DMatrix, ExternalCheckpointManager, XGBoost => SXGBoost}
import org.scalatest.{FunSuite, Ignore}
import org.scalatest.FunSuite
import org.apache.hadoop.fs.{FileSystem, Path}
class ExternalCheckpointManagerSuite extends FunSuite with TmpFolderPerSuite with PerTest {

View File

@ -1,5 +1,5 @@
/*
Copyright (c) 2014 by Contributors
Copyright (c) 2014-2022 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -16,10 +16,8 @@
package ml.dmlc.xgboost4j.scala.spark
import ml.dmlc.xgboost4j.java.XGBoostError
import org.apache.spark.Partitioner
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.sql.SparkSession
import org.scalatest.FunSuite
import org.apache.spark.sql.functions._
@ -53,7 +51,7 @@ class FeatureSizeValidatingSuite extends FunSuite with PerTest {
"objective" -> "binary:logistic",
"num_round" -> 5, "num_workers" -> 2, "use_external_memory" -> true, "missing" -> 0)
import DataUtils._
val sparkSession = SparkSession.builder().getOrCreate()
val sparkSession = ss
import sparkSession.implicits._
val repartitioned = sc.parallelize(Synthetic.trainWithDiffFeatureSize, 2)
.map(lp => (lp.label, lp)).partitionBy(

View File

@ -1,5 +1,5 @@
/*
Copyright (c) 2014 by Contributors
Copyright (c) 2014-2022 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -16,14 +16,14 @@
package ml.dmlc.xgboost4j.scala.spark
import ml.dmlc.xgboost4j.java.XGBoostError
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.sql.DataFrame
import org.scalatest.FunSuite
import scala.util.Random
import org.apache.spark.SparkException
class MissingValueHandlingSuite extends FunSuite with PerTest {
test("dense vectors containing missing value") {
def buildDenseDataFrame(): DataFrame = {
@ -113,7 +113,7 @@ class MissingValueHandlingSuite extends FunSuite with PerTest {
val inputDF = vectorAssembler.transform(testDF).select("features", "label")
val paramMap = List("eta" -> "1", "max_depth" -> "2",
"objective" -> "binary:logistic", "missing" -> -1.0f, "num_workers" -> 1).toMap
intercept[XGBoostError] {
intercept[SparkException] {
new XGBoostClassifier(paramMap).fit(inputDF)
}
}
@ -140,7 +140,7 @@ class MissingValueHandlingSuite extends FunSuite with PerTest {
inputDF.show()
val paramMap = List("eta" -> "1", "max_depth" -> "2",
"objective" -> "binary:logistic", "missing" -> -1.0f, "num_workers" -> 1).toMap
intercept[XGBoostError] {
intercept[SparkException] {
new XGBoostClassifier(paramMap).fit(inputDF)
}
}

View File

@ -1,5 +1,5 @@
/*
Copyright (c) 2014 by Contributors
Copyright (c) 2014-2022 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -16,9 +16,9 @@
package ml.dmlc.xgboost4j.scala.spark
import ml.dmlc.xgboost4j.java.XGBoostError
import org.scalatest.{BeforeAndAfterAll, FunSuite, Ignore}
import org.scalatest.{BeforeAndAfterAll, FunSuite}
import org.apache.spark.SparkException
import org.apache.spark.ml.param.ParamMap
class ParameterSuite extends FunSuite with PerTest with BeforeAndAfterAll {
@ -40,28 +40,16 @@ class ParameterSuite extends FunSuite with PerTest with BeforeAndAfterAll {
assert(xgbCopy2.MLlib2XGBoostParams("eval_metric").toString === "logloss")
}
private def waitForSparkContextShutdown(): Unit = {
var totalWaitedTime = 0L
while (!ss.sparkContext.isStopped && totalWaitedTime <= 120000) {
Thread.sleep(10000)
totalWaitedTime += 10000
}
assert(ss.sparkContext.isStopped === true)
}
test("fail training elegantly with unsupported objective function") {
val paramMap = Map("eta" -> "0.1", "max_depth" -> "6", "silent" -> "1",
"objective" -> "wrong_objective_function", "num_class" -> "6", "num_round" -> 5,
"num_workers" -> numWorkers)
val trainingDF = buildDataFrame(MultiClassification.train)
val xgb = new XGBoostClassifier(paramMap)
try {
val model = xgb.fit(trainingDF)
} catch {
case e: Throwable => // swallow anything
} finally {
waitForSparkContextShutdown()
intercept[SparkException] {
xgb.fit(trainingDF)
}
}
test("fail training elegantly with unsupported eval metrics") {
@ -70,12 +58,8 @@ class ParameterSuite extends FunSuite with PerTest with BeforeAndAfterAll {
"num_workers" -> numWorkers, "eval_metric" -> "wrong_eval_metrics")
val trainingDF = buildDataFrame(MultiClassification.train)
val xgb = new XGBoostClassifier(paramMap)
try {
val model = xgb.fit(trainingDF)
} catch {
case e: Throwable => // swallow anything
} finally {
waitForSparkContextShutdown()
intercept[SparkException] {
xgb.fit(trainingDF)
}
}

View File

@ -1,5 +1,5 @@
/*
Copyright (c) 2014 by Contributors
Copyright (c) 2014-2022 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -19,7 +19,7 @@ package ml.dmlc.xgboost4j.scala.spark
import java.io.File
import ml.dmlc.xgboost4j.{LabeledPoint => XGBLabeledPoint}
import org.apache.spark.{SparkConf, SparkContext, TaskFailedListener}
import org.apache.spark.SparkContext
import org.apache.spark.sql._
import org.scalatest.{BeforeAndAfterEach, FunSuite}
@ -40,33 +40,17 @@ trait PerTest extends BeforeAndAfterEach { self: FunSuite =>
.appName("XGBoostSuite")
.config("spark.ui.enabled", false)
.config("spark.driver.memory", "512m")
.config("spark.barrier.sync.timeout", 10)
.config("spark.task.cpus", 1)
override def beforeEach(): Unit = getOrCreateSession
override def afterEach() {
TaskFailedListener.sparkContextShutdownLock.synchronized {
if (currentSession != null) {
// this synchronization is mostly for the tests involving SparkContext shutdown
// for unit test involving the sparkContext shutdown there are two different events sequence
// 1. SparkContext killer is executed before afterEach, in this case, before SparkContext
// is fully stopped, afterEach() will block at the following code block
// 2. SparkContext killer is executed afterEach, in this case, currentSession.stop() in will
// block to wait for all msgs in ListenerBus get processed. Because currentSession.stop()
// has been called, SparkContext killer will not take effect
while (TaskFailedListener.killerStarted) {
TaskFailedListener.sparkContextShutdownLock.wait()
}
currentSession.stop()
cleanExternalCache(currentSession.sparkContext.appName)
currentSession = null
}
if (TaskFailedListener.sparkContextKiller != null) {
TaskFailedListener.sparkContextKiller.interrupt()
TaskFailedListener.sparkContextKiller = null
}
TaskFailedListener.killerStarted = false
}
}
private def getOrCreateSession = synchronized {

View File

@ -1,5 +1,5 @@
/*
Copyright (c) 2014,2021 by Contributors
Copyright (c) 2014-2022 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

View File

@ -1,5 +1,5 @@
/*
Copyright (c) 2014 by Contributors
Copyright (c) 2014-2022 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -16,10 +16,8 @@
package ml.dmlc.xgboost4j.scala.spark
import ml.dmlc.xgboost4j.java.Rabit
import ml.dmlc.xgboost4j.scala.{Booster, DMatrix}
import scala.collection.JavaConverters._
import org.apache.spark.sql._
import org.scalatest.FunSuite

View File

@ -1,5 +1,5 @@
/*
Copyright (c) 2014 by Contributors
Copyright (c) 2014-2022 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -16,13 +16,12 @@
package ml.dmlc.xgboost4j.scala.spark
import ml.dmlc.xgboost4j.java.XGBoostError
import scala.util.Random
import ml.dmlc.xgboost4j.{LabeledPoint => XGBLabeledPoint}
import ml.dmlc.xgboost4j.scala.DMatrix
import org.apache.spark.TaskContext
import org.apache.spark.{SparkException, TaskContext}
import org.scalatest.FunSuite
import org.apache.spark.ml.feature.VectorAssembler
@ -375,13 +374,14 @@ class XGBoostGeneralSuite extends FunSuite with TmpFolderPerSuite with PerTest {
test("throw exception for empty partition in trainingset") {
val paramMap = Map("eta" -> "0.1", "max_depth" -> "6", "silent" -> "1",
"objective" -> "multi:softmax", "num_class" -> "2", "num_round" -> 5,
"num_workers" -> numWorkers, "tree_method" -> "auto")
"objective" -> "binary:logistic", "num_class" -> "2", "num_round" -> 5,
"num_workers" -> numWorkers, "tree_method" -> "auto", "allow_non_zero_for_missing" -> true)
// The Dmatrix will be empty
val trainingDF = buildDataFrame(Seq(XGBLabeledPoint(1.0f, 1, Array(), Array())))
val trainingDF = buildDataFrame(Seq(XGBLabeledPoint(1.0f, 4,
Array(0, 1, 2, 3), Array(0, 1, 2, 3))))
val xgb = new XGBoostClassifier(paramMap)
intercept[XGBoostError] {
val model = xgb.fit(trainingDF)
intercept[SparkException] {
xgb.fit(trainingDF)
}
}

View File

@ -1,5 +1,5 @@
/*
Copyright (c) 2014 by Contributors
Copyright (c) 2014-2022 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
@ -16,14 +16,15 @@
package ml.dmlc.xgboost4j.scala.spark
import ml.dmlc.xgboost4j.java.{Rabit, XGBoostError}
import ml.dmlc.xgboost4j.scala.{Booster, DMatrix}
import org.apache.spark.TaskFailedListener
import org.apache.spark.SparkException
import ml.dmlc.xgboost4j.java.Rabit
import ml.dmlc.xgboost4j.scala.Booster
import scala.collection.JavaConverters._
import org.apache.spark.sql._
import org.scalatest.FunSuite
import org.apache.spark.SparkException
class XGBoostRabitRegressionSuite extends FunSuite with PerTest {
val predictionErrorMin = 0.00001f
val maxFailure = 2;
@ -33,15 +34,6 @@ class XGBoostRabitRegressionSuite extends FunSuite with PerTest {
.config("spark.kryo.classesToRegister", classOf[Booster].getName)
.master(s"local[${numWorkers},${maxFailure}]")
private def waitAndCheckSparkShutdown(waitMiliSec: Int): Boolean = {
var totalWaitedTime = 0L
while (!ss.sparkContext.isStopped && totalWaitedTime <= waitMiliSec) {
Thread.sleep(10)
totalWaitedTime += 10
}
return ss.sparkContext.isStopped
}
test("test classification prediction parity w/o ring reduce") {
val training = buildDataFrame(Classification.train)
val testDF = buildDataFrame(Classification.test)
@ -91,14 +83,11 @@ class XGBoostRabitRegressionSuite extends FunSuite with PerTest {
}
test("test rabit timeout fail handle") {
// disable spark kill listener to verify if rabit_timeout take effect and kill tasks
TaskFailedListener.killerStarted = true
val training = buildDataFrame(Classification.train)
// mock rank 0 failure during 8th allreduce synchronization
Rabit.mockList = Array("0,8,0,0").toList.asJava
try {
intercept[SparkException] {
new XGBoostClassifier(Map(
"eta" -> "0.1",
"max_depth" -> "10",
@ -108,39 +97,7 @@ class XGBoostRabitRegressionSuite extends FunSuite with PerTest {
"num_workers" -> numWorkers,
"rabit_timeout" -> 0))
.fit(training)
} catch {
case e: Throwable => // swallow anything
} finally {
// assume all tasks throw exception almost same time
// 100ms should be enough to exhaust all retries
assert(waitAndCheckSparkShutdown(100) == true)
TaskFailedListener.killerStarted = false
}
}
test("test SparkContext should not be killed ") {
cancel("For some reason, sparkContext can't cancel the job locally in the CI env," +
"which will be resolved when introducing barrier mode")
val training = buildDataFrame(Classification.train)
// mock rank 0 failure during 8th allreduce synchronization
Rabit.mockList = Array("0,8,0,0").toList.asJava
try {
new XGBoostClassifier(Map(
"eta" -> "0.1",
"max_depth" -> "10",
"verbosity" -> "1",
"objective" -> "binary:logistic",
"num_round" -> 5,
"num_workers" -> numWorkers,
"kill_spark_context_on_worker_failure" -> false,
"rabit_timeout" -> 0))
.fit(training)
} catch {
case e: Throwable => // swallow anything
} finally {
// wait 3s to check if SparkContext is killed
assert(waitAndCheckSparkShutdown(3000) == false)
}
}
}

View File

@ -21,7 +21,6 @@ import ml.dmlc.xgboost4j.scala.{DMatrix, XGBoost => ScalaXGBoost}
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.{DataFrame, Row}
import org.apache.spark.sql.types._
import org.scalatest.FunSuite
import org.apache.spark.ml.feature.VectorAssembler

View File

@ -1,151 +0,0 @@
/*
Copyright (c) 2014 by Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package org.apache.spark
import org.scalatest.FunSuite
import _root_.ml.dmlc.xgboost4j.scala.spark.PerTest
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
import scala.math.min
class SparkParallelismTrackerSuite extends FunSuite with PerTest {
val numParallelism: Int = min(Runtime.getRuntime.availableProcessors(), 4)
override protected def sparkSessionBuilder: SparkSession.Builder = SparkSession.builder()
.master(s"local[${numParallelism}]")
.appName("XGBoostSuite")
.config("spark.ui.enabled", true)
.config("spark.driver.memory", "512m")
.config("spark.task.cpus", 1)
private def waitAndCheckSparkShutdown(waitMiliSec: Int): Boolean = {
var totalWaitedTime = 0L
while (!ss.sparkContext.isStopped && totalWaitedTime <= waitMiliSec) {
Thread.sleep(100)
totalWaitedTime += 100
}
ss.sparkContext.isStopped
}
test("tracker should not affect execution result when timeout is not larger than 0") {
val nWorkers = numParallelism
val rdd: RDD[Int] = sc.parallelize(1 to nWorkers)
val tracker = new SparkParallelismTracker(sc, 10000, nWorkers)
val disabledTracker = new SparkParallelismTracker(sc, 0, nWorkers)
assert(tracker.execute(rdd.sum()) == rdd.sum())
assert(disabledTracker.execute(rdd.sum()) == rdd.sum())
}
test("tracker should throw exception if parallelism is not sufficient") {
val nWorkers = numParallelism * 3
val rdd: RDD[Int] = sc.parallelize(1 to nWorkers)
val tracker = new SparkParallelismTracker(sc, 1000, nWorkers)
intercept[IllegalStateException] {
tracker.execute {
rdd.map { i =>
// Test interruption
Thread.sleep(Long.MaxValue)
i
}.sum()
}
}
}
test("tracker should throw exception if parallelism is not sufficient with" +
" spark.task.cpus larger than 1") {
sc.conf.set("spark.task.cpus", "2")
val nWorkers = numParallelism
val rdd: RDD[Int] = sc.parallelize(1 to nWorkers)
val tracker = new SparkParallelismTracker(sc, 1000, nWorkers)
intercept[IllegalStateException] {
tracker.execute {
rdd.map { i =>
// Test interruption
Thread.sleep(Long.MaxValue)
i
}.sum()
}
}
}
test("tracker should not kill SparkContext when killSparkContextOnWorkerFailure=false") {
val nWorkers = numParallelism
val tracker = new SparkParallelismTracker(sc, 0, nWorkers, false)
val rdd: RDD[Int] = sc.parallelize(1 to nWorkers, nWorkers)
try {
tracker.execute {
rdd.map { i =>
val partitionId = TaskContext.get().partitionId()
if (partitionId == 0) {
throw new RuntimeException("mocking task failing")
}
i
}.sum()
}
} catch {
case e: Exception => // catch the exception
} finally {
// wait 3s to check if SparkContext is killed
assert(waitAndCheckSparkShutdown(3000) == false)
}
}
test("tracker should cancel the correct job when killSparkContextOnWorkerFailure=false") {
val nWorkers = 2
val tracker = new SparkParallelismTracker(sc, 0, nWorkers, false)
val rdd: RDD[Int] = sc.parallelize(1 to 10, nWorkers)
val thread = new TestThread(sc)
thread.start()
try {
tracker.execute {
rdd.map { i =>
Thread.sleep(100)
val partitionId = TaskContext.get().partitionId()
if (partitionId == 0) {
throw new RuntimeException("mocking task failing")
}
i
}.sum()
}
} catch {
case e: Exception => // catch the exception
} finally {
thread.join(8000)
// wait 3s to check if SparkContext is killed
assert(waitAndCheckSparkShutdown(3000) == false)
}
}
private[this] class TestThread(sc: SparkContext) extends Thread {
override def run(): Unit = {
var sum: Double = 0.0f
try {
val rdd = sc.parallelize(1 to 4, 2)
sum = rdd.mapPartitions(iter => {
// sleep 2s to ensure task is alive when cancelling other jobs
Thread.sleep(2000)
iter
}).sum()
} finally {
// get the correct result
assert(sum.toInt == 10)
}
}
}
}