add dump nice to regression demo
This commit is contained in:
parent
7d97d6b1d4
commit
dc239376c7
@ -4,10 +4,11 @@ Run: ./runexp.sh
|
|||||||
|
|
||||||
Format of input: LIBSVM format
|
Format of input: LIBSVM format
|
||||||
|
|
||||||
Format of featmap.txt:
|
Format of ```featmap.txt: <featureid> <featurename> <q or i or int>\n ```:
|
||||||
<featureid> <featurename> <q or i>\n
|
- Feature id must be from 0 to number of features, in sorted order.
|
||||||
|
- i means this feature is binary indicator feature
|
||||||
|
- q means this feature is a quantitative value, such as age, time, can be missing
|
||||||
|
- int means this feature is integer value (when int is hinted, the decision boundary will be integer)
|
||||||
|
|
||||||
q means continuous quantities, i means indicator features.
|
|
||||||
Feature id must be from 0 to num_features, in sorted order.
|
|
||||||
|
|
||||||
Detailed explaination: https://github.com/tqchen/xgboost/wiki/Binary-Classification
|
Explainations: https://github.com/tqchen/xgboost/wiki/Binary-Classification
|
||||||
|
|||||||
@ -3,3 +3,11 @@ Demonstrating how to use XGBoost accomplish regression tasks on computer hardwar
|
|||||||
Run: ./runexp.sh
|
Run: ./runexp.sh
|
||||||
|
|
||||||
Format of input: LIBSVM format
|
Format of input: LIBSVM format
|
||||||
|
|
||||||
|
Format of ```featmap.txt: <featureid> <featurename> <q or i or int>\n ```:
|
||||||
|
- Feature id must be from 0 to number of features, in sorted order.
|
||||||
|
- i means this feature is binary indicator feature
|
||||||
|
- q means this feature is a quantitative value, such as age, time, can be missing
|
||||||
|
- int means this feature is integer value (when int is hinted, the decision boundary will be integer)
|
||||||
|
|
||||||
|
Explainations: https://github.com/tqchen/xgboost/wiki/Regression
|
||||||
|
|||||||
@ -10,12 +10,23 @@ for l in open( 'machine.data' ):
|
|||||||
for i in xrange( 0,6 ):
|
for i in xrange( 0,6 ):
|
||||||
fo.write( ' %d:%s' %(i,arr[i+2]) )
|
fo.write( ' %d:%s' %(i,arr[i+2]) )
|
||||||
|
|
||||||
if arr[0] not in fmap.keys():
|
if arr[0] not in fmap:
|
||||||
fmap[arr[0]] = cnt
|
fmap[arr[0]] = cnt
|
||||||
cnt += 1
|
cnt += 1
|
||||||
|
|
||||||
fo.write( ' %d:1' % fmap[arr[0]] )
|
fo.write( ' %d:1' % fmap[arr[0]] )
|
||||||
|
|
||||||
fo.write('\n')
|
fo.write('\n')
|
||||||
|
|
||||||
fo.close()
|
fo.close()
|
||||||
|
|
||||||
|
# create feature map for machine data
|
||||||
|
fo = open('featmap.txt', 'w')
|
||||||
|
# list from machine.names
|
||||||
|
names = ['vendor','MYCT', 'MMIN', 'MMAX', 'CACH', 'CHMIN', 'CHMAX', 'PRP', 'ERP' ];
|
||||||
|
|
||||||
|
for i in xrange(0,6):
|
||||||
|
fo.write( '%d\t%s\tint\n' % (i, names[i+1]))
|
||||||
|
|
||||||
|
for v, k in sorted( fmap.iteritems(), key = lambda x:x[1] ):
|
||||||
|
fo.write( '%d\tvendor=%s\ti\n' % (k, v))
|
||||||
|
fo.close()
|
||||||
|
|||||||
@ -7,5 +7,10 @@ python mknfold.py machine.txt 1
|
|||||||
../../xgboost machine.conf
|
../../xgboost machine.conf
|
||||||
# output predictions of test data
|
# output predictions of test data
|
||||||
../../xgboost machine.conf task=pred model_in=0002.model
|
../../xgboost machine.conf task=pred model_in=0002.model
|
||||||
# print the boosters of 00002.model in dump.raw.txt
|
# print the boosters of 0002.model in dump.raw.txt
|
||||||
../../xgboost machine.conf task=dump model_in=0002.model name_dump=dump.raw.txt
|
../../xgboost machine.conf task=dump model_in=0002.model name_dump=dump.raw.txt
|
||||||
|
# print the boosters of 0002.model in dump.nice.txt with feature map
|
||||||
|
../../xgboost machine.conf task=dump model_in=0002.model fmap=featmap.txt name_dump=dump.nice.txt
|
||||||
|
|
||||||
|
# cat the result
|
||||||
|
cat dump.nice.txt
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user