add cv for python

This commit is contained in:
tqchen 2014-09-03 22:43:55 -07:00
parent 586d6ae740
commit da9c856701
6 changed files with 91 additions and 10 deletions

View File

@ -12,7 +12,7 @@ This is a list of short codes introducing different functionalities of xgboost a
* Cutomize loss function, and evaluation metric. [python](guide-python/custom_objective.py)
* Boosting from existing prediction. [python](guide-python/boost_from_prediction.py)
* Predicting using first n trees. [python](guide-python/predict_first_ntree.py)
* Cross validation(to come)
* Cross validation [python](guide-python/cross_validation.py)
Basic Examples by Tasks
====

View File

@ -4,3 +4,4 @@ XGBoost Python Feature Walkthrough
* [Cutomize loss function, and evaluation metric](custom_objective.py)
* [Boosting from existing prediction](boost_from_prediction.py)
* [Predicting using first n trees](predict_first_ntree.py)
* [Cross validation](cross_validation.py)

View File

@ -0,0 +1,63 @@
#!/usr/bin/python
import sys
import numpy as np
sys.path.append('../../wrapper')
import xgboost as xgb
### load data in do training
dtrain = xgb.DMatrix('../data/agaricus.txt.train')
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic'}
num_round = 2
print ('running cross validation')
# do cross validation, this will print result out as
# [iteration] metric_name:mean_value+std_value
# std_value is standard deviation of the metric
xgb.cv(param, dtrain, num_round, nfold=5,
metrics={'error'}, seed = 0)
print ('running cross validation, disable standard deviation display')
# do cross validation, this will print result out as
# [iteration] metric_name:mean_value+std_value
# std_value is standard deviation of the metric
xgb.cv(param, dtrain, num_round, nfold=5,
metrics={'error'}, seed = 0, show_stdv = False)
print ('running cross validation, with preprocessing function')
# define the preprocessing function
# used to return the preprocessed training, test data, and parameter
# we can use this to do weight rescale, etc.
# as a example, we try to set scale_pos_weight
def fpreproc(dtrain, dtest, param):
label = dtrain.get_label()
ratio = float(np.sum(label == 0)) / np.sum(label==1)
param['scale_pos_weight'] = ratio
return (dtrain, dtest, param)
# do cross validation, for each fold
# the dtrain, dtest, param will be passed into fpreproc
# then the return value of fpreproc will be used to generate
# results of that fold
xgb.cv(param, dtrain, num_round, nfold=5,
metrics={'auc'}, seed = 0, fpreproc = fpreproc)
###
# you can also do cross validation with cutomized loss function
# See custom_objective.py
##
print ('running cross validation, with cutomsized loss function')
def logregobj(preds, dtrain):
labels = dtrain.get_label()
preds = 1.0 / (1.0 + np.exp(-preds))
grad = preds - labels
hess = preds * (1.0-preds)
return grad, hess
def evalerror(preds, dtrain):
labels = dtrain.get_label()
return 'error', float(sum(labels != (preds > 0.0))) / len(labels)
param = {'max_depth':2, 'eta':1, 'silent':1}
# train with customized objective
xgb.cv(param, dtrain, num_round, nfold = 5, seed = 0,
obj = logregobj, feval=evalerror)

View File

@ -80,6 +80,9 @@ class EvalSet{
}
return result;
}
inline size_t Size(void) const {
return evals_.size();
}
private:
std::vector<const IEvaluator*> evals_;

View File

@ -244,8 +244,10 @@ class BoostLearner {
obj_->SetParam(cfg_[i].first.c_str(), cfg_[i].second.c_str());
gbm_->SetParam(cfg_[i].first.c_str(), cfg_[i].second.c_str());
}
if (evaluator_.Size() == 0) {
evaluator_.AddEval(obj_->DefaultEvalMetric());
}
}
/*!
* \brief get un-transformed prediction
* \param data training data matrix

View File

@ -448,11 +448,13 @@ def mknfold(dall, nfold, param, seed, evals=[], fpreproc = None):
# run preprocessing on the data set if needed
if fpreproc is not None:
dtrain, dtest, tparam = fpreproc(dtrain, dtest, param.copy())
else:
tparam = param
plst = tparam.items() + [('eval_metric', itm) for itm in evals]
ret.append(CVPack(dtrain, dtest, plst))
return ret
def aggcv(rlist):
def aggcv(rlist, show_stdv=True):
"""
aggregate cross validation results
"""
@ -468,11 +470,14 @@ def aggcv(rlist):
cvmap[k].append(float(v))
for k, v in sorted(cvmap.items(), key = lambda x:x[0]):
v = np.array(v)
ret += '\t%s:%f+%f' % (k, np.mean(v), np.std(v))
if show_stdv:
ret += '\tcv-%s:%f+%f' % (k, np.mean(v), np.std(v))
else:
ret += '\tcv-%s:%f' % (k, np.mean(v))
return ret
def cv(params, dtrain, num_boost_round = 10, nfold=3, eval_metric = [], \
obj = None, feval = None, fpreproc = None):
def cv(params, dtrain, num_boost_round = 10, nfold=3, metrics=[], \
obj = None, feval = None, fpreproc = None, show_stdv = True, seed = 0):
""" cross validation with given paramaters
Args:
params: dict
@ -485,14 +490,21 @@ def cv(params, dtrain, num_boost_round = 10, nfold=3, eval_metric = [], \
folds to do cv
evals: list or
list of items to be evaluated
obj:
feval:
obj: custom objective function
feval: custom evaluation function
fpreproc: preprocessing function that takes dtrain, dtest,
param and return transformed version of dtrain, dtest, param
show_stdv: whether display standard deviation
seed: seed used to generate the folds
Returns: list(string) of evaluation history
"""
cvfolds = mknfold(dtrain, nfold, params, 0, eval_metric, fpreproc)
results = []
cvfolds = mknfold(dtrain, nfold, params, seed, metrics, fpreproc)
for i in range(num_boost_round):
for f in cvfolds:
f.update(i, obj)
res = aggcv([f.eval(i, feval) for f in cvfolds])
res = aggcv([f.eval(i, feval) for f in cvfolds], show_stdv)
sys.stderr.write(res+'\n')
results.append(res)
return results