add cv for python
This commit is contained in:
parent
586d6ae740
commit
da9c856701
@ -12,7 +12,7 @@ This is a list of short codes introducing different functionalities of xgboost a
|
||||
* Cutomize loss function, and evaluation metric. [python](guide-python/custom_objective.py)
|
||||
* Boosting from existing prediction. [python](guide-python/boost_from_prediction.py)
|
||||
* Predicting using first n trees. [python](guide-python/predict_first_ntree.py)
|
||||
* Cross validation(to come)
|
||||
* Cross validation [python](guide-python/cross_validation.py)
|
||||
|
||||
Basic Examples by Tasks
|
||||
====
|
||||
|
||||
@ -4,3 +4,4 @@ XGBoost Python Feature Walkthrough
|
||||
* [Cutomize loss function, and evaluation metric](custom_objective.py)
|
||||
* [Boosting from existing prediction](boost_from_prediction.py)
|
||||
* [Predicting using first n trees](predict_first_ntree.py)
|
||||
* [Cross validation](cross_validation.py)
|
||||
|
||||
63
demo/guide-python/cross_validation.py
Executable file
63
demo/guide-python/cross_validation.py
Executable file
@ -0,0 +1,63 @@
|
||||
#!/usr/bin/python
|
||||
import sys
|
||||
import numpy as np
|
||||
sys.path.append('../../wrapper')
|
||||
import xgboost as xgb
|
||||
|
||||
### load data in do training
|
||||
dtrain = xgb.DMatrix('../data/agaricus.txt.train')
|
||||
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic'}
|
||||
num_round = 2
|
||||
|
||||
print ('running cross validation')
|
||||
# do cross validation, this will print result out as
|
||||
# [iteration] metric_name:mean_value+std_value
|
||||
# std_value is standard deviation of the metric
|
||||
xgb.cv(param, dtrain, num_round, nfold=5,
|
||||
metrics={'error'}, seed = 0)
|
||||
|
||||
print ('running cross validation, disable standard deviation display')
|
||||
# do cross validation, this will print result out as
|
||||
# [iteration] metric_name:mean_value+std_value
|
||||
# std_value is standard deviation of the metric
|
||||
xgb.cv(param, dtrain, num_round, nfold=5,
|
||||
metrics={'error'}, seed = 0, show_stdv = False)
|
||||
|
||||
print ('running cross validation, with preprocessing function')
|
||||
# define the preprocessing function
|
||||
# used to return the preprocessed training, test data, and parameter
|
||||
# we can use this to do weight rescale, etc.
|
||||
# as a example, we try to set scale_pos_weight
|
||||
def fpreproc(dtrain, dtest, param):
|
||||
label = dtrain.get_label()
|
||||
ratio = float(np.sum(label == 0)) / np.sum(label==1)
|
||||
param['scale_pos_weight'] = ratio
|
||||
return (dtrain, dtest, param)
|
||||
|
||||
# do cross validation, for each fold
|
||||
# the dtrain, dtest, param will be passed into fpreproc
|
||||
# then the return value of fpreproc will be used to generate
|
||||
# results of that fold
|
||||
xgb.cv(param, dtrain, num_round, nfold=5,
|
||||
metrics={'auc'}, seed = 0, fpreproc = fpreproc)
|
||||
|
||||
###
|
||||
# you can also do cross validation with cutomized loss function
|
||||
# See custom_objective.py
|
||||
##
|
||||
print ('running cross validation, with cutomsized loss function')
|
||||
def logregobj(preds, dtrain):
|
||||
labels = dtrain.get_label()
|
||||
preds = 1.0 / (1.0 + np.exp(-preds))
|
||||
grad = preds - labels
|
||||
hess = preds * (1.0-preds)
|
||||
return grad, hess
|
||||
def evalerror(preds, dtrain):
|
||||
labels = dtrain.get_label()
|
||||
return 'error', float(sum(labels != (preds > 0.0))) / len(labels)
|
||||
|
||||
param = {'max_depth':2, 'eta':1, 'silent':1}
|
||||
# train with customized objective
|
||||
xgb.cv(param, dtrain, num_round, nfold = 5, seed = 0,
|
||||
obj = logregobj, feval=evalerror)
|
||||
|
||||
@ -80,6 +80,9 @@ class EvalSet{
|
||||
}
|
||||
return result;
|
||||
}
|
||||
inline size_t Size(void) const {
|
||||
return evals_.size();
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<const IEvaluator*> evals_;
|
||||
|
||||
@ -244,8 +244,10 @@ class BoostLearner {
|
||||
obj_->SetParam(cfg_[i].first.c_str(), cfg_[i].second.c_str());
|
||||
gbm_->SetParam(cfg_[i].first.c_str(), cfg_[i].second.c_str());
|
||||
}
|
||||
if (evaluator_.Size() == 0) {
|
||||
evaluator_.AddEval(obj_->DefaultEvalMetric());
|
||||
}
|
||||
}
|
||||
/*!
|
||||
* \brief get un-transformed prediction
|
||||
* \param data training data matrix
|
||||
|
||||
@ -448,11 +448,13 @@ def mknfold(dall, nfold, param, seed, evals=[], fpreproc = None):
|
||||
# run preprocessing on the data set if needed
|
||||
if fpreproc is not None:
|
||||
dtrain, dtest, tparam = fpreproc(dtrain, dtest, param.copy())
|
||||
else:
|
||||
tparam = param
|
||||
plst = tparam.items() + [('eval_metric', itm) for itm in evals]
|
||||
ret.append(CVPack(dtrain, dtest, plst))
|
||||
return ret
|
||||
|
||||
def aggcv(rlist):
|
||||
def aggcv(rlist, show_stdv=True):
|
||||
"""
|
||||
aggregate cross validation results
|
||||
"""
|
||||
@ -468,11 +470,14 @@ def aggcv(rlist):
|
||||
cvmap[k].append(float(v))
|
||||
for k, v in sorted(cvmap.items(), key = lambda x:x[0]):
|
||||
v = np.array(v)
|
||||
ret += '\t%s:%f+%f' % (k, np.mean(v), np.std(v))
|
||||
if show_stdv:
|
||||
ret += '\tcv-%s:%f+%f' % (k, np.mean(v), np.std(v))
|
||||
else:
|
||||
ret += '\tcv-%s:%f' % (k, np.mean(v))
|
||||
return ret
|
||||
|
||||
def cv(params, dtrain, num_boost_round = 10, nfold=3, eval_metric = [], \
|
||||
obj = None, feval = None, fpreproc = None):
|
||||
def cv(params, dtrain, num_boost_round = 10, nfold=3, metrics=[], \
|
||||
obj = None, feval = None, fpreproc = None, show_stdv = True, seed = 0):
|
||||
""" cross validation with given paramaters
|
||||
Args:
|
||||
params: dict
|
||||
@ -485,14 +490,21 @@ def cv(params, dtrain, num_boost_round = 10, nfold=3, eval_metric = [], \
|
||||
folds to do cv
|
||||
evals: list or
|
||||
list of items to be evaluated
|
||||
obj:
|
||||
feval:
|
||||
obj: custom objective function
|
||||
feval: custom evaluation function
|
||||
fpreproc: preprocessing function that takes dtrain, dtest,
|
||||
param and return transformed version of dtrain, dtest, param
|
||||
show_stdv: whether display standard deviation
|
||||
seed: seed used to generate the folds
|
||||
|
||||
Returns: list(string) of evaluation history
|
||||
"""
|
||||
cvfolds = mknfold(dtrain, nfold, params, 0, eval_metric, fpreproc)
|
||||
results = []
|
||||
cvfolds = mknfold(dtrain, nfold, params, seed, metrics, fpreproc)
|
||||
for i in range(num_boost_round):
|
||||
for f in cvfolds:
|
||||
f.update(i, obj)
|
||||
res = aggcv([f.eval(i, feval) for f in cvfolds])
|
||||
res = aggcv([f.eval(i, feval) for f in cvfolds], show_stdv)
|
||||
sys.stderr.write(res+'\n')
|
||||
results.append(res)
|
||||
return results
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user