fix iris multiclass problem
This commit is contained in:
parent
2b170ecda4
commit
d776e0fdf5
@ -6,7 +6,7 @@ setClass('xgb.DMatrix')
|
|||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(iris)
|
||||||
#' iris[,5] <- as.numeric(iris[,5])
|
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||||
#' labels <- getinfo(dtrain, "label")
|
#' labels <- getinfo(dtrain, "label")
|
||||||
#' @rdname getinfo
|
#' @rdname getinfo
|
||||||
|
|||||||
@ -11,11 +11,12 @@ setClass("xgb.Booster")
|
|||||||
#' value of sum of functions, when outputmargin=TRUE, the prediction is
|
#' value of sum of functions, when outputmargin=TRUE, the prediction is
|
||||||
#' untransformed margin value. In logistic regression, outputmargin=T will
|
#' untransformed margin value. In logistic regression, outputmargin=T will
|
||||||
#' output value before logistic transformation.
|
#' output value before logistic transformation.
|
||||||
#' @param ntreelimit limit number of trees used in prediction, this parameter is only valid for gbtree, but not for gblinear.
|
#' @param ntreelimit limit number of trees used in prediction, this parameter is
|
||||||
#' set it to be value bigger than 0. It will use all trees by default.
|
#' only valid for gbtree, but not for gblinear. set it to be value bigger
|
||||||
|
#' than 0. It will use all trees by default.
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(iris)
|
||||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2)
|
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||||
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
||||||
#' @export
|
#' @export
|
||||||
#'
|
#'
|
||||||
|
|||||||
@ -8,7 +8,7 @@ setClass('xgb.DMatrix')
|
|||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(iris)
|
||||||
#' iris[,5] <- as.numeric(iris[,5])
|
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||||
#' dsub <- slice(dtrain, 1:3)
|
#' dsub <- slice(dtrain, 1:3)
|
||||||
#' @rdname slice
|
#' @rdname slice
|
||||||
|
|||||||
@ -12,7 +12,7 @@
|
|||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(iris)
|
||||||
#' iris[,5] <- as.numeric(iris[,5])
|
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||||
#' xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
#' xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
||||||
#' dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
#' dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
||||||
|
|||||||
@ -7,7 +7,7 @@
|
|||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(iris)
|
||||||
#' iris[,5] <- as.numeric(iris[,5])
|
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||||
#' xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
#' xgb.DMatrix.save(dtrain, 'iris.xgb.DMatrix')
|
||||||
#' dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
#' dtrain <- xgb.DMatrix('iris.xgb.DMatrix')
|
||||||
|
|||||||
@ -13,7 +13,7 @@
|
|||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(iris)
|
||||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2)
|
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||||
#' xgb.dump(bst, 'iris.xgb.model.dump')
|
#' xgb.dump(bst, 'iris.xgb.model.dump')
|
||||||
#' @export
|
#' @export
|
||||||
#'
|
#'
|
||||||
|
|||||||
@ -6,7 +6,7 @@
|
|||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(iris)
|
||||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2)
|
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||||
#' xgb.save(bst, 'iris.xgb.model')
|
#' xgb.save(bst, 'iris.xgb.model')
|
||||||
#' bst <- xgb.load('iris.xgb.model')
|
#' bst <- xgb.load('iris.xgb.model')
|
||||||
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
||||||
|
|||||||
@ -7,7 +7,7 @@
|
|||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(iris)
|
||||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2)
|
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||||
#' xgb.save(bst, 'iris.xgb.model')
|
#' xgb.save(bst, 'iris.xgb.model')
|
||||||
#' bst <- xgb.load('iris.xgb.model')
|
#' bst <- xgb.load('iris.xgb.model')
|
||||||
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
||||||
|
|||||||
@ -44,7 +44,7 @@
|
|||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(iris)
|
||||||
#' iris[,5] <- as.numeric(iris[,5])
|
#' iris[,5] <- as.numeric(iris[,5]=='setosa')
|
||||||
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
#' dtrain <- xgb.DMatrix(as.matrix(iris[,1:4]), label=iris[,5])
|
||||||
#' dtest <- dtrain
|
#' dtest <- dtrain
|
||||||
#' watchlist <- list(eval = dtest, train = dtrain)
|
#' watchlist <- list(eval = dtest, train = dtrain)
|
||||||
|
|||||||
@ -34,7 +34,7 @@
|
|||||||
#'
|
#'
|
||||||
#' @examples
|
#' @examples
|
||||||
#' data(iris)
|
#' data(iris)
|
||||||
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]), nrounds = 2)
|
#' bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'), nrounds = 2)
|
||||||
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
#' pred <- predict(bst, as.matrix(iris[,1:4]))
|
||||||
#' @export
|
#' @export
|
||||||
#'
|
#'
|
||||||
|
|||||||
@ -80,7 +80,7 @@ In this section, we will illustrate some common usage of \verb@xgboost@.
|
|||||||
<<Training and prediction with iris>>=
|
<<Training and prediction with iris>>=
|
||||||
library(xgboost)
|
library(xgboost)
|
||||||
data(iris)
|
data(iris)
|
||||||
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]),
|
bst <- xgboost(as.matrix(iris[,1:4]),as.numeric(iris[,5]=='setosa'),
|
||||||
nrounds = 5)
|
nrounds = 5)
|
||||||
xgb.save(bst, 'model.save')
|
xgb.save(bst, 'model.save')
|
||||||
bst = xgb.load('model.save')
|
bst = xgb.load('model.save')
|
||||||
@ -121,7 +121,7 @@ training from initial prediction value, weighted training instance.
|
|||||||
We can use \verb@xgb.DMatrix@ to construct an \verb@xgb.DMatrix@ object:
|
We can use \verb@xgb.DMatrix@ to construct an \verb@xgb.DMatrix@ object:
|
||||||
<<xgb.DMatrix>>=
|
<<xgb.DMatrix>>=
|
||||||
iris.mat <- as.matrix(iris[,1:4])
|
iris.mat <- as.matrix(iris[,1:4])
|
||||||
iris.label <- as.numeric(iris[,5])
|
iris.label <- as.numeric(iris[,5]=='setosa')
|
||||||
diris <- xgb.DMatrix(iris.mat, label = iris.label)
|
diris <- xgb.DMatrix(iris.mat, label = iris.label)
|
||||||
class(diris)
|
class(diris)
|
||||||
getinfo(diris,'label')
|
getinfo(diris,'label')
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user