[SYCL] Add dask support for distributed (#10812)

This commit is contained in:
Dmitry Razdoburdin 2024-09-21 20:01:57 +02:00 committed by GitHub
parent 2a37a8880c
commit d7599e095b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 219 additions and 6 deletions

View File

@ -31,6 +31,33 @@ template void InitHist(::sycl::queue qu,
GHistRow<double, MemoryType::on_device>* hist,
size_t size, ::sycl::event* event);
/*!
* \brief Copy histogram from src to dst
*/
template<typename GradientSumT>
void CopyHist(::sycl::queue qu,
GHistRow<GradientSumT, MemoryType::on_device>* dst,
const GHistRow<GradientSumT, MemoryType::on_device>& src,
size_t size) {
GradientSumT* pdst = reinterpret_cast<GradientSumT*>(dst->Data());
const GradientSumT* psrc = reinterpret_cast<const GradientSumT*>(src.DataConst());
qu.submit([&](::sycl::handler& cgh) {
cgh.parallel_for<>(::sycl::range<1>(2 * size), [=](::sycl::item<1> pid) {
const size_t i = pid.get_id(0);
pdst[i] = psrc[i];
});
}).wait();
}
template void CopyHist(::sycl::queue qu,
GHistRow<float, MemoryType::on_device>* dst,
const GHistRow<float, MemoryType::on_device>& src,
size_t size);
template void CopyHist(::sycl::queue qu,
GHistRow<double, MemoryType::on_device>* dst,
const GHistRow<double, MemoryType::on_device>& src,
size_t size);
/*!
* \brief Compute Subtraction: dst = src1 - src2
*/

View File

@ -36,6 +36,15 @@ void InitHist(::sycl::queue qu,
GHistRow<GradientSumT, MemoryType::on_device>* hist,
size_t size, ::sycl::event* event);
/*!
* \brief Copy histogram from src to dst
*/
template<typename GradientSumT>
void CopyHist(::sycl::queue qu,
GHistRow<GradientSumT, MemoryType::on_device>* dst,
const GHistRow<GradientSumT, MemoryType::on_device>& src,
size_t size);
/*!
* \brief Compute subtraction: dst = src1 - src2
*/

View File

@ -39,6 +39,42 @@ class BatchHistRowsAdder: public HistRowsAdder<GradientSumT> {
}
};
template <typename GradientSumT>
class DistributedHistRowsAdder: public HistRowsAdder<GradientSumT> {
public:
void AddHistRows(HistUpdater<GradientSumT>* builder,
std::vector<int>* sync_ids, RegTree *p_tree) override {
builder->builder_monitor_.Start("AddHistRows");
const size_t explicit_size = builder->nodes_for_explicit_hist_build_.size();
const size_t subtaction_size = builder->nodes_for_subtraction_trick_.size();
std::vector<int> merged_node_ids(explicit_size + subtaction_size);
for (size_t i = 0; i < explicit_size; ++i) {
merged_node_ids[i] = builder->nodes_for_explicit_hist_build_[i].nid;
}
for (size_t i = 0; i < subtaction_size; ++i) {
merged_node_ids[explicit_size + i] =
builder->nodes_for_subtraction_trick_[i].nid;
}
std::sort(merged_node_ids.begin(), merged_node_ids.end());
sync_ids->clear();
for (auto const& nid : merged_node_ids) {
if ((*p_tree)[nid].IsLeftChild()) {
builder->hist_.AddHistRow(nid);
builder->hist_local_worker_.AddHistRow(nid);
sync_ids->push_back(nid);
}
}
for (auto const& nid : merged_node_ids) {
if (!((*p_tree)[nid].IsLeftChild())) {
builder->hist_.AddHistRow(nid);
builder->hist_local_worker_.AddHistRow(nid);
}
}
builder->builder_monitor_.Stop("AddHistRows");
}
};
} // namespace tree
} // namespace sycl
} // namespace xgboost

View File

@ -61,6 +61,68 @@ class BatchHistSynchronizer: public HistSynchronizer<GradientSumT> {
std::vector<::sycl::event> hist_sync_events_;
};
template <typename GradientSumT>
class DistributedHistSynchronizer: public HistSynchronizer<GradientSumT> {
public:
void SyncHistograms(HistUpdater<GradientSumT>* builder,
const std::vector<int>& sync_ids,
RegTree *p_tree) override {
builder->builder_monitor_.Start("SyncHistograms");
const size_t nbins = builder->hist_builder_.GetNumBins();
for (int node = 0; node < builder->nodes_for_explicit_hist_build_.size(); node++) {
const auto entry = builder->nodes_for_explicit_hist_build_[node];
auto& this_hist = builder->hist_[entry.nid];
// // Store posible parent node
auto& this_local = builder->hist_local_worker_[entry.nid];
common::CopyHist(builder->qu_, &this_local, this_hist, nbins);
if (!(*p_tree)[entry.nid].IsRoot()) {
const size_t parent_id = (*p_tree)[entry.nid].Parent();
auto sibling_nid = entry.GetSiblingId(p_tree, parent_id);
auto& parent_hist = builder->hist_local_worker_[parent_id];
auto& sibling_hist = builder->hist_[sibling_nid];
common::SubtractionHist(builder->qu_, &sibling_hist, parent_hist,
this_hist, nbins, ::sycl::event());
builder->qu_.wait_and_throw();
// Store posible parent node
auto& sibling_local = builder->hist_local_worker_[sibling_nid];
common::CopyHist(builder->qu_, &sibling_local, sibling_hist, nbins);
}
}
builder->ReduceHists(sync_ids, nbins);
ParallelSubtractionHist(builder, builder->nodes_for_explicit_hist_build_, p_tree);
ParallelSubtractionHist(builder, builder->nodes_for_subtraction_trick_, p_tree);
builder->builder_monitor_.Stop("SyncHistograms");
}
void ParallelSubtractionHist(HistUpdater<GradientSumT>* builder,
const std::vector<ExpandEntry>& nodes,
const RegTree * p_tree) {
const size_t nbins = builder->hist_builder_.GetNumBins();
for (int node = 0; node < nodes.size(); node++) {
const auto entry = nodes[node];
if (!((*p_tree)[entry.nid].IsLeftChild())) {
auto& this_hist = builder->hist_[entry.nid];
if (!(*p_tree)[entry.nid].IsRoot()) {
const size_t parent_id = (*p_tree)[entry.nid].Parent();
auto& parent_hist = builder->hist_[parent_id];
auto& sibling_hist = builder->hist_[entry.GetSiblingId(p_tree, parent_id)];
common::SubtractionHist(builder->qu_, &this_hist, parent_hist,
sibling_hist, nbins, ::sycl::event());
builder->qu_.wait_and_throw();
}
}
}
}
private:
std::vector<::sycl::event> hist_sync_events_;
};
} // namespace tree
} // namespace sycl
} // namespace xgboost

View File

@ -22,6 +22,30 @@ using ::sycl::ext::oneapi::plus;
using ::sycl::ext::oneapi::minimum;
using ::sycl::ext::oneapi::maximum;
template <typename GradientSumT>
void HistUpdater<GradientSumT>::ReduceHists(const std::vector<int>& sync_ids,
size_t nbins) {
if (reduce_buffer_.size() < sync_ids.size() * nbins) {
reduce_buffer_.resize(sync_ids.size() * nbins);
}
for (size_t i = 0; i < sync_ids.size(); i++) {
auto& this_hist = hist_[sync_ids[i]];
const GradientPairT* psrc = reinterpret_cast<const GradientPairT*>(this_hist.DataConst());
qu_.memcpy(reduce_buffer_.data() + i * nbins, psrc, nbins*sizeof(GradientPairT)).wait();
}
auto buffer_vec = linalg::MakeVec(reinterpret_cast<GradientSumT*>(reduce_buffer_.data()),
2 * nbins * sync_ids.size());
auto rc = collective::Allreduce(ctx_, buffer_vec, collective::Op::kSum);
SafeColl(rc);
for (size_t i = 0; i < sync_ids.size(); i++) {
auto& this_hist = hist_[sync_ids[i]];
GradientPairT* psrc = reinterpret_cast<GradientPairT*>(this_hist.Data());
qu_.memcpy(psrc, reduce_buffer_.data() + i * nbins, nbins*sizeof(GradientPairT)).wait();
}
}
template <typename GradientSumT>
void HistUpdater<GradientSumT>::SetHistSynchronizer(
HistSynchronizer<GradientSumT> *sync) {
@ -492,6 +516,7 @@ void HistUpdater<GradientSumT>::InitData(
// initialize histogram collection
uint32_t nbins = gmat.cut.Ptrs().back();
hist_.Init(qu_, nbins);
hist_local_worker_.Init(qu_, nbins);
hist_buffer_.Init(qu_, nbins);
size_t buffer_size = kBufferSize;

View File

@ -87,7 +87,10 @@ class HistUpdater {
protected:
friend class BatchHistSynchronizer<GradientSumT>;
friend class DistributedHistSynchronizer<GradientSumT>;
friend class BatchHistRowsAdder<GradientSumT>;
friend class DistributedHistRowsAdder<GradientSumT>;
struct SplitQuery {
bst_node_t nid;
@ -183,6 +186,8 @@ class HistUpdater {
RegTree* p_tree,
const USMVector<GradientPair, MemoryType::on_device>& gpair);
void ReduceHists(const std::vector<int>& sync_ids, size_t nbins);
inline static bool LossGuide(ExpandEntry lhs, ExpandEntry rhs) {
if (lhs.GetLossChange() == rhs.GetLossChange()) {
return lhs.GetNodeId() > rhs.GetNodeId(); // favor small timestamp
@ -230,6 +235,8 @@ class HistUpdater {
common::ParallelGHistBuilder<GradientSumT> hist_buffer_;
/*! \brief culmulative histogram of gradients. */
common::HistCollection<GradientSumT, MemoryType::on_device> hist_;
/*! \brief culmulative local parent histogram of gradients. */
common::HistCollection<GradientSumT, MemoryType::on_device> hist_local_worker_;
/*! \brief TreeNode Data: statistics for each constructed node */
std::vector<NodeEntry<GradientSumT>> snode_host_;
@ -258,6 +265,8 @@ class HistUpdater {
USMVector<bst_float, MemoryType::on_device> out_preds_buf_;
bst_float* out_pred_ptr = nullptr;
std::vector<GradientPairT> reduce_buffer_;
::sycl::queue qu_;
};

View File

@ -51,7 +51,8 @@ void QuantileHistMaker::SetPimpl(std::unique_ptr<HistUpdater<GradientSumT>>* pim
param_,
int_constraint_, dmat));
if (collective::IsDistributed()) {
LOG(FATAL) << "Distributed mode is not yet upstreamed for sycl";
(*pimpl)->SetHistSynchronizer(new DistributedHistSynchronizer<GradientSumT>());
(*pimpl)->SetHistRowsAdder(new DistributedHistRowsAdder<GradientSumT>());
} else {
(*pimpl)->SetHistSynchronizer(new BatchHistSynchronizer<GradientSumT>());
(*pimpl)->SetHistRowsAdder(new BatchHistRowsAdder<GradientSumT>());

View File

@ -306,6 +306,7 @@ def _check_distributed_params(kwargs: Dict[str, Any]) -> None:
raise TypeError(msg)
if device and device.find(":") != -1:
if device != "sycl:gpu":
raise ValueError(
"Distributed training doesn't support selecting device ordinal as GPUs are"
" managed by the distributed frameworks. use `device=cuda` or `device=gpu`"

View File

@ -17,5 +17,6 @@ dependencies:
- pytest
- pytest-timeout
- pytest-cov
- dask
- dpcpp_linux-64
- onedpl-devel

View File

@ -0,0 +1,42 @@
from xgboost import dask as dxgb
from xgboost import testing as tm
from hypothesis import given, strategies, assume, settings, note
import dask.array as da
import dask.distributed
def train_result(client, param, dtrain, num_rounds):
result = dxgb.train(
client,
param,
dtrain,
num_rounds,
verbose_eval=False,
evals=[(dtrain, "train")],
)
return result
class TestSYCLDask:
# The simplest test verify only one node training.
def test_simple(self):
cluster = dask.distributed.LocalCluster(n_workers=1)
client = dask.distributed.Client(cluster)
param = {}
param["tree_method"] = "hist"
param["device"] = "sycl"
param["verbosity"] = 0
param["objective"] = "reg:squarederror"
# X and y must be Dask dataframes or arrays
num_obs = 1e4
num_features = 20
X = da.random.random(size=(num_obs, num_features), chunks=(1000, num_features))
y = da.random.random(size=(num_obs, 1), chunks=(1000, 1))
dtrain = dxgb.DaskDMatrix(client, X, y)
result = train_result(client, param, dtrain, 10)
assert tm.non_increasing(result["history"]["train"]["rmse"])