refinement of R package

This commit is contained in:
unknown 2014-08-27 12:57:37 -07:00
parent 0fe5470a4f
commit d747172d37
6 changed files with 89 additions and 60 deletions

View File

@ -8,3 +8,4 @@ export(xgb.train)
export(xgb.save)
export(xgb.load)
export(xgb.dump)
export(xgb.DMatrix.save)

View File

@ -1,5 +1,5 @@
# constructing DMatrix
xgb.DMatrix <- function(data, missing=0.0, ...) {
xgb.DMatrix <- function(data, info=list(), missing=0.0, ...) {
if (typeof(data) == "character") {
handle <- .Call("XGDMatrixCreateFromFile_R", data, as.integer(FALSE), PACKAGE="xgboost")
} else if(is.matrix(data)) {
@ -11,7 +11,7 @@ xgb.DMatrix <- function(data, missing=0.0, ...) {
}
dmat <- structure(handle, class="xgb.DMatrix")
info = list(...)
info = append(info,list(...))
if (length(info)==0)
return(dmat)
for (i in 1:length(info)) {

View File

@ -0,0 +1,12 @@
# save model or DMatrix to file
xgb.DMatrix.save <- function(handle, fname) {
if (typeof(fname) != "character") {
stop("xgb.save: fname must be character")
}
if (class(handle) == "xgb.DMatrix") {
.Call("XGDMatrixSaveBinary_R", handle, fname, as.integer(FALSE), PACKAGE="xgboost")
return(TRUE)
}
stop("xgb.save: the input must be either xgb.DMatrix or xgb.Booster")
return(FALSE)
}

View File

@ -7,10 +7,6 @@ xgb.save <- function(handle, fname) {
.Call("XGBoosterSaveModel_R", handle, fname, PACKAGE="xgboost")
return(TRUE)
}
if (class(handle) == "xgb.DMatrix") {
.Call("XGDMatrixSaveBinary_R", handle, fname, as.integer(FALSE), PACKAGE="xgboost")
return(TRUE)
}
stop("xgb.save: the input must be either xgb.DMatrix or xgb.Booster")
return(FALSE)
}

View File

@ -1,49 +1,41 @@
# Main function for xgboost-package
xgboost = function(x=NULL,y=NULL,DMatrix=NULL, file=NULL, validation=NULL,
nrounds=10, obj=NULL, feval=NULL, margin=NULL, verbose = T, ...)
xgboost = function(data=NULL, label = NULL, params=list(), nrounds=10,
verbose = 1, ...)
{
if (!is.null(DMatrix))
dtrain = DMatrix
inClass = class(data)
if (inClass=='dgCMatrix' || inClass=='matrix')
{
if (is.null(label))
stop('xgboost: need label when data is a matrix')
dtrain = xgb.DMatrix(data, label=y)
}
else
{
if (is.null(x) && is.null(y))
{
if (is.null(file))
stop('xgboost need input data, either R objects, local files or DMatrix object.')
dtrain = xgb.DMatrix(file)
}
if (!is.null(label))
warning('xgboost: label will be ignored.')
if (inClass=='character')
dtrain = xgb.DMatrix(data)
else if (inClass=='xgb.DMatrix')
dtrain = data
else
dtrain = xgb.DMatrix(x, label=y)
if (!is.null(margin))
{
succ <- xgb.setinfo(dtrain, "base_margin", margin)
if (!succ)
warning('Attemp to use margin failed.')
}
stop('xgboost: Invalid input of data')
}
params = list(...)
if (verbose>1)
silent = 0
else
silent = 1
watchlist=list()
if (verbose)
{
if (!is.null(validation))
{
if (class(validation)!='xgb.DMatrix')
dtest = xgb.DMatrix(validation)
else
dtest = validation
watchlist = list(eval=dtest,train=dtrain)
}
else
watchlist = list(train=dtrain)
}
params = append(params, list(silent=silent))
params = append(params, list(...))
bst <- xgb.train(params, dtrain, nrounds, watchlist, obj, feval)
if (verbose>0)
watchlist = list(train=dtrain)
else
watchlist = list()
bst <- xgb.train(params, dtrain, nrounds, watchlist)
return(bst)
}

View File

@ -51,20 +51,25 @@ dtrain = xgb.DMatrix(dense.x, label=y)
############################
# Test with DMatrix object
bst = xgboost(DMatrix=dtrain, max_depth=2, eta=1, silent=1, objective='binary:logistic')
bst = xgboost(data=dtrain, max_depth=2, eta=1, objective='binary:logistic')
# Verbose = 0,1,2
bst = xgboost(data=dtrain, max_depth=2, eta=1, objective='binary:logistic',
verbose = 0)
bst = xgboost(data=dtrain, max_depth=2, eta=1, objective='binary:logistic',
verbose = 1)
bst = xgboost(data=dtrain, max_depth=2, eta=1, objective='binary:logistic',
verbose = 2)
# Test with local file
bst = xgboost(file='agaricus.txt.train', max_depth=2, eta=1, silent=1, objective='binary:logistic')
bst = xgboost(data='agaricus.txt.train', max_depth=2, eta=1, objective='binary:logistic')
# Test with Sparse Matrix
bst = xgboost(x = x, y = y, max_depth=2, eta=1, silent=1, objective='binary:logistic')
bst = xgboost(data = x, label = y, max_depth=2, eta=1, objective='binary:logistic')
# Test with dense Matrix
bst = xgboost(x = dense.x, y = y, max_depth=2, eta=1, silent=1, objective='binary:logistic')
bst = xgboost(data = dense.x, label = y, max_depth=2, eta=1, objective='binary:logistic')
# Test with validation set
bst = xgboost(file='agaricus.txt.train', validation='agaricus.txt.test',
max_depth=2, eta=1, silent=1, objective='binary:logistic')
############################
# Test predict
@ -102,17 +107,39 @@ pred = predict(bst, test.x)
# save model to text file
xgb.dump(bst, 'model.dump')
# save a DMatrix object to hard disk
xgb.DMatrix.save(dtrain,'dtrain.save')
# load a DMatrix object to R
dtrain = xgb.DMatrix('dtrain.save')
############################
# Customized objective and evaluation function
# More flexible training function xgb.train
############################
param = list(max_depth=2, eta=1, silent = 1, objective="binary:logistic")
watchlist <- list("eval"=dtest,"train"=dtrain)
# training xgboost model
bst <- xgb.train(param, dtrain, nround=2, watchlist=watchlist)
############################
# cutomsized loss function
############################
param <- list(max_depth = 2, eta = 1, silent =1)
# note: for customized objective function, we leave objective as default
# note: what we are getting is margin value in prediction
# you must know what you are doing
# user define objective function, given prediction, return gradient and second order gradient
# this is loglikelihood loss
logregobj = function(preds, dtrain) {
labels = xgb.getinfo(dtrain, "label")
preds = 1.0 / (1.0 + exp(-preds))
grad = preds - labels
hess = preds * (1.0-preds)
logregobj <- function(preds, dtrain) {
labels <- xgb.getinfo(dtrain, "label")
preds <- 1.0 / (1.0 + exp(-preds))
grad <- preds - labels
hess <- preds * (1.0-preds)
return(list(grad=grad, hess=hess))
}
# user defined evaluation function, return a list(metric="metric-name", value="metric-value")
@ -121,13 +148,14 @@ logregobj = function(preds, dtrain) {
# for example, we are doing logistic loss, the prediction is score before logistic transformation
# the buildin evaluation error assumes input is after logistic transformation
# Take this in mind when you use the customization, and maybe you need write customized evaluation function
evalerror = function(preds, dtrain) {
labels = xgb.getinfo(dtrain, "label")
err = as.numeric(sum(labels != (preds > 0.0))) / length(labels)
evalerror <- function(preds, dtrain) {
labels <- xgb.getinfo(dtrain, "label")
err <- as.numeric(sum(labels != (preds > 0.0))) / length(labels)
return(list(metric="error", value=err))
}
bst = xgboost(x = x, y = y, max_depth=2, eta=1, silent=1, objective='binary:logistic',
obj=logregobj, feval=evalerror)
# training with customized objective, we can also do step by step training
# simply look at xgboost.py"s implementation of train
bst <- xgb.train(param, dtrain, nround=2, watchlist, logregobj, evalerror)