Integration tests for interaction constraints with column-wise data split (#9611)
This commit is contained in:
parent
c75a3bc0a9
commit
d6d14d0fb9
@ -720,48 +720,39 @@ INSTANTIATE_TEST_SUITE_P(ColumnSplitObjective, TestColumnSplit,
|
||||
});
|
||||
|
||||
namespace {
|
||||
void VerifyColumnSplitColumnSampler(std::string const& tree_method, bool use_gpu,
|
||||
Json const& expected_model) {
|
||||
Json GetModelWithArgs(std::shared_ptr<DMatrix> dmat, std::string const& tree_method,
|
||||
std::string const& device, Args const& args) {
|
||||
std::unique_ptr<Learner> learner{Learner::Create({dmat})};
|
||||
learner->SetParam("tree_method", tree_method);
|
||||
learner->SetParam("device", device);
|
||||
learner->SetParam("objective", "reg:logistic");
|
||||
learner->SetParams(args);
|
||||
learner->UpdateOneIter(0, dmat);
|
||||
Json model{Object{}};
|
||||
{
|
||||
learner->SaveModel(&model);
|
||||
return model;
|
||||
}
|
||||
|
||||
void VerifyColumnSplitWithArgs(std::string const& tree_method, bool use_gpu, Args const& args,
|
||||
Json const& expected_model) {
|
||||
auto const world_size = collective::GetWorldSize();
|
||||
auto const rank = collective::GetRank();
|
||||
auto const objective = "reg:logistic";
|
||||
auto p_fmat = MakeFmatForObjTest(objective);
|
||||
auto p_fmat = MakeFmatForObjTest("");
|
||||
std::shared_ptr<DMatrix> sliced{p_fmat->SliceCol(world_size, rank)};
|
||||
std::unique_ptr<Learner> learner{Learner::Create({sliced})};
|
||||
learner->SetParam("tree_method", tree_method);
|
||||
std::string device = "cpu";
|
||||
if (use_gpu) {
|
||||
auto gpu_id = common::AllVisibleGPUs() == 1 ? 0 : rank;
|
||||
learner->SetParam("device", "cuda:" + std::to_string(gpu_id));
|
||||
}
|
||||
learner->SetParam("objective", objective);
|
||||
learner->SetParam("colsample_bytree", "0.5");
|
||||
learner->SetParam("colsample_bylevel", "0.6");
|
||||
learner->SetParam("colsample_bynode", "0.7");
|
||||
learner->UpdateOneIter(0, sliced);
|
||||
learner->SaveModel(&model);
|
||||
device = "cuda:" + std::to_string(gpu_id);
|
||||
}
|
||||
auto model = GetModelWithArgs(sliced, tree_method, device, args);
|
||||
ASSERT_EQ(model, expected_model);
|
||||
}
|
||||
|
||||
void TestColumnSplitColumnSampler(std::string const& tree_method, bool use_gpu) {
|
||||
Json model{Object{}};
|
||||
{
|
||||
auto objective = "reg:logistic";
|
||||
auto p_fmat = MakeFmatForObjTest(objective);
|
||||
std::unique_ptr<Learner> learner{Learner::Create({p_fmat})};
|
||||
learner->SetParam("tree_method", tree_method);
|
||||
if (use_gpu) {
|
||||
learner->SetParam("device", "cuda:0");
|
||||
}
|
||||
learner->SetParam("objective", objective);
|
||||
learner->SetParam("colsample_bytree", "0.5");
|
||||
learner->SetParam("colsample_bylevel", "0.6");
|
||||
learner->SetParam("colsample_bynode", "0.7");
|
||||
learner->UpdateOneIter(0, p_fmat);
|
||||
learner->SaveModel(&model);
|
||||
}
|
||||
void TestColumnSplitWithArgs(std::string const& tree_method, bool use_gpu, Args const& args) {
|
||||
auto p_fmat = MakeFmatForObjTest("");
|
||||
std::string device = use_gpu ? "cuda:0" : "cpu";
|
||||
auto model = GetModelWithArgs(p_fmat, tree_method, device, args);
|
||||
|
||||
auto world_size{3};
|
||||
if (use_gpu) {
|
||||
world_size = common::AllVisibleGPUs();
|
||||
@ -770,9 +761,19 @@ void TestColumnSplitColumnSampler(std::string const& tree_method, bool use_gpu)
|
||||
world_size = 3;
|
||||
}
|
||||
}
|
||||
RunWithInMemoryCommunicator(world_size, VerifyColumnSplitColumnSampler, tree_method, use_gpu,
|
||||
RunWithInMemoryCommunicator(world_size, VerifyColumnSplitWithArgs, tree_method, use_gpu, args,
|
||||
model);
|
||||
}
|
||||
|
||||
void TestColumnSplitColumnSampler(std::string const& tree_method, bool use_gpu) {
|
||||
Args args{{"colsample_bytree", "0.5"}, {"colsample_bylevel", "0.6"}, {"colsample_bynode", "0.7"}};
|
||||
TestColumnSplitWithArgs(tree_method, use_gpu, args);
|
||||
}
|
||||
|
||||
void TestColumnSplitInteractionConstraints(std::string const& tree_method, bool use_gpu) {
|
||||
Args args{{"interaction_constraints", "[[0, 5, 7], [2, 8, 9], [1, 3, 6]]"}};
|
||||
TestColumnSplitWithArgs(tree_method, use_gpu, args);
|
||||
}
|
||||
} // anonymous namespace
|
||||
|
||||
TEST(ColumnSplitColumnSampler, Approx) { TestColumnSplitColumnSampler("approx", false); }
|
||||
@ -780,8 +781,26 @@ TEST(ColumnSplitColumnSampler, Approx) { TestColumnSplitColumnSampler("approx",
|
||||
TEST(ColumnSplitColumnSampler, Hist) { TestColumnSplitColumnSampler("hist", false); }
|
||||
|
||||
#if defined(XGBOOST_USE_CUDA)
|
||||
TEST(ColumnSplitColumnSampler, GPUApprox) { TestColumnSplitColumnSampler("approx", true); }
|
||||
TEST(MGPUColumnSplitColumnSampler, GPUApprox) { TestColumnSplitColumnSampler("approx", true); }
|
||||
|
||||
TEST(ColumnSplitColumnSampler, GPUHist) { TestColumnSplitColumnSampler("hist", true); }
|
||||
TEST(MGPUColumnSplitColumnSampler, GPUHist) { TestColumnSplitColumnSampler("hist", true); }
|
||||
#endif // defined(XGBOOST_USE_CUDA)
|
||||
|
||||
TEST(ColumnSplitInteractionConstraints, Approx) {
|
||||
TestColumnSplitInteractionConstraints("approx", false);
|
||||
}
|
||||
|
||||
TEST(ColumnSplitInteractionConstraints, Hist) {
|
||||
TestColumnSplitInteractionConstraints("hist", false);
|
||||
}
|
||||
|
||||
#if defined(XGBOOST_USE_CUDA)
|
||||
TEST(MGPUColumnSplitInteractionConstraints, GPUApprox) {
|
||||
TestColumnSplitInteractionConstraints("approx", true);
|
||||
}
|
||||
|
||||
TEST(MGPUColumnSplitInteractionConstraints, GPUHist) {
|
||||
TestColumnSplitInteractionConstraints("hist", true);
|
||||
}
|
||||
#endif // defined(XGBOOST_USE_CUDA)
|
||||
} // namespace xgboost
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user