Reduce time for some multi-gpu tests (#8288)
* Faster dask tests * Reuse AllReducer objects in tests. * Faster boost from prediction tests. * Use rmm dask fixture. * Speed up dask demo. * mypy * Format with black. * mypy * Clang-tidy Co-authored-by: Hyunsu Philip Cho <chohyu01@cs.washington.edu>
This commit is contained in:
parent
ca0547bb65
commit
d686bf52a6
@ -4,13 +4,12 @@ Example of training with Dask on GPU
|
|||||||
"""
|
"""
|
||||||
from dask_cuda import LocalCUDACluster
|
from dask_cuda import LocalCUDACluster
|
||||||
import dask_cudf
|
import dask_cudf
|
||||||
from dask.distributed import Client, wait
|
from dask.distributed import Client
|
||||||
from dask import array as da
|
from dask import array as da
|
||||||
from dask import dataframe as dd
|
from dask import dataframe as dd
|
||||||
import xgboost as xgb
|
import xgboost as xgb
|
||||||
from xgboost import dask as dxgb
|
from xgboost import dask as dxgb
|
||||||
from xgboost.dask import DaskDMatrix
|
from xgboost.dask import DaskDMatrix
|
||||||
import argparse
|
|
||||||
|
|
||||||
|
|
||||||
def using_dask_matrix(client: Client, X, y):
|
def using_dask_matrix(client: Client, X, y):
|
||||||
@ -51,7 +50,7 @@ def using_quantile_device_dmatrix(client: Client, X, y):
|
|||||||
|
|
||||||
# `DaskDeviceQuantileDMatrix` is used instead of `DaskDMatrix`, be careful
|
# `DaskDeviceQuantileDMatrix` is used instead of `DaskDMatrix`, be careful
|
||||||
# that it can not be used for anything else other than training.
|
# that it can not be used for anything else other than training.
|
||||||
dtrain = dxgb.DaskDeviceQuantileDMatrix(client, X, y)
|
dtrain = dxgb.DaskQuantileDMatrix(client, X, y)
|
||||||
output = xgb.dask.train(client,
|
output = xgb.dask.train(client,
|
||||||
{'verbosity': 2,
|
{'verbosity': 2,
|
||||||
'tree_method': 'gpu_hist'},
|
'tree_method': 'gpu_hist'},
|
||||||
@ -63,12 +62,6 @@ def using_quantile_device_dmatrix(client: Client, X, y):
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
'--ddqdm', choices=[0, 1], type=int, default=1,
|
|
||||||
help='''Whether should we use `DaskDeviceQuantileDMatrix`''')
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
# `LocalCUDACluster` is used for assigning GPU to XGBoost processes. Here
|
# `LocalCUDACluster` is used for assigning GPU to XGBoost processes. Here
|
||||||
# `n_workers` represents the number of GPUs since we use one GPU per worker
|
# `n_workers` represents the number of GPUs since we use one GPU per worker
|
||||||
# process.
|
# process.
|
||||||
@ -77,12 +70,10 @@ if __name__ == '__main__':
|
|||||||
# generate some random data for demonstration
|
# generate some random data for demonstration
|
||||||
m = 100000
|
m = 100000
|
||||||
n = 100
|
n = 100
|
||||||
X = da.random.random(size=(m, n), chunks=100)
|
X = da.random.random(size=(m, n), chunks=10000)
|
||||||
y = da.random.random(size=(m, ), chunks=100)
|
y = da.random.random(size=(m, ), chunks=10000)
|
||||||
|
|
||||||
if args.ddqdm == 1:
|
print('Using DaskQuantileDMatrix')
|
||||||
print('Using DaskDeviceQuantileDMatrix')
|
|
||||||
from_ddqdm = using_quantile_device_dmatrix(client, X, y)
|
from_ddqdm = using_quantile_device_dmatrix(client, X, y)
|
||||||
else:
|
|
||||||
print('Using DMatrix')
|
print('Using DMatrix')
|
||||||
from_dmatrix = using_dask_matrix(client, X, y)
|
from_dmatrix = using_dask_matrix(client, X, y)
|
||||||
|
|||||||
@ -508,7 +508,7 @@ void SketchContainer::AllReduce() {
|
|||||||
|
|
||||||
timer_.Start(__func__);
|
timer_.Start(__func__);
|
||||||
if (!reducer_) {
|
if (!reducer_) {
|
||||||
reducer_ = std::make_unique<dh::AllReducer>();
|
reducer_ = std::make_shared<dh::AllReducer>();
|
||||||
reducer_->Init(device_);
|
reducer_->Init(device_);
|
||||||
}
|
}
|
||||||
// Reduce the overhead on syncing.
|
// Reduce the overhead on syncing.
|
||||||
@ -518,6 +518,7 @@ void SketchContainer::AllReduce() {
|
|||||||
std::min(global_sum_rows, static_cast<size_t>(num_bins_ * kFactor));
|
std::min(global_sum_rows, static_cast<size_t>(num_bins_ * kFactor));
|
||||||
this->Prune(intermediate_num_cuts);
|
this->Prune(intermediate_num_cuts);
|
||||||
|
|
||||||
|
|
||||||
auto d_columns_ptr = this->columns_ptr_.ConstDeviceSpan();
|
auto d_columns_ptr = this->columns_ptr_.ConstDeviceSpan();
|
||||||
CHECK_EQ(d_columns_ptr.size(), num_columns_ + 1);
|
CHECK_EQ(d_columns_ptr.size(), num_columns_ + 1);
|
||||||
size_t n = d_columns_ptr.size();
|
size_t n = d_columns_ptr.size();
|
||||||
|
|||||||
@ -37,7 +37,7 @@ class SketchContainer {
|
|||||||
|
|
||||||
private:
|
private:
|
||||||
Monitor timer_;
|
Monitor timer_;
|
||||||
std::unique_ptr<dh::AllReducer> reducer_;
|
std::shared_ptr<dh::AllReducer> reducer_;
|
||||||
HostDeviceVector<FeatureType> feature_types_;
|
HostDeviceVector<FeatureType> feature_types_;
|
||||||
bst_row_t num_rows_;
|
bst_row_t num_rows_;
|
||||||
bst_feature_t num_columns_;
|
bst_feature_t num_columns_;
|
||||||
@ -93,13 +93,15 @@ class SketchContainer {
|
|||||||
* \param num_columns Total number of columns in dataset.
|
* \param num_columns Total number of columns in dataset.
|
||||||
* \param num_rows Total number of rows in known dataset (typically the rows in current worker).
|
* \param num_rows Total number of rows in known dataset (typically the rows in current worker).
|
||||||
* \param device GPU ID.
|
* \param device GPU ID.
|
||||||
|
* \param reducer Optional initialised reducer. Useful for speeding up testing.
|
||||||
*/
|
*/
|
||||||
SketchContainer(HostDeviceVector<FeatureType> const& feature_types,
|
SketchContainer(HostDeviceVector<FeatureType> const &feature_types,
|
||||||
int32_t max_bin,
|
int32_t max_bin, bst_feature_t num_columns,
|
||||||
bst_feature_t num_columns, bst_row_t num_rows,
|
bst_row_t num_rows, int32_t device,
|
||||||
int32_t device)
|
std::shared_ptr<dh::AllReducer> reducer = nullptr)
|
||||||
: num_rows_{num_rows},
|
: num_rows_{num_rows},
|
||||||
num_columns_{num_columns}, num_bins_{max_bin}, device_{device} {
|
num_columns_{num_columns}, num_bins_{max_bin}, device_{device},
|
||||||
|
reducer_(std::move(reducer)) {
|
||||||
CHECK_GE(device, 0);
|
CHECK_GE(device, 0);
|
||||||
// Initialize Sketches for this dmatrix
|
// Initialize Sketches for this dmatrix
|
||||||
this->columns_ptr_.SetDevice(device_);
|
this->columns_ptr_.SetDevice(device_);
|
||||||
|
|||||||
@ -349,6 +349,9 @@ TEST(GPUQuantile, AllReduceBasic) {
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
auto reducer = std::make_shared<dh::AllReducer>();
|
||||||
|
reducer->Init(0);
|
||||||
|
|
||||||
constexpr size_t kRows = 1000, kCols = 100;
|
constexpr size_t kRows = 1000, kCols = 100;
|
||||||
RunWithSeedsAndBins(kRows, [=](int32_t seed, size_t n_bins, MetaInfo const& info) {
|
RunWithSeedsAndBins(kRows, [=](int32_t seed, size_t n_bins, MetaInfo const& info) {
|
||||||
// Set up single node version;
|
// Set up single node version;
|
||||||
@ -378,12 +381,12 @@ TEST(GPUQuantile, AllReduceBasic) {
|
|||||||
}
|
}
|
||||||
sketch_on_single_node.Unique();
|
sketch_on_single_node.Unique();
|
||||||
TestQuantileElemRank(0, sketch_on_single_node.Data(),
|
TestQuantileElemRank(0, sketch_on_single_node.Data(),
|
||||||
sketch_on_single_node.ColumnsPtr());
|
sketch_on_single_node.ColumnsPtr(), true);
|
||||||
|
|
||||||
// Set up distributed version. We rely on using rank as seed to generate
|
// Set up distributed version. We rely on using rank as seed to generate
|
||||||
// the exact same copy of data.
|
// the exact same copy of data.
|
||||||
auto rank = rabit::GetRank();
|
auto rank = rabit::GetRank();
|
||||||
SketchContainer sketch_distributed(ft, n_bins, kCols, kRows, 0);
|
SketchContainer sketch_distributed(ft, n_bins, kCols, kRows, 0, reducer);
|
||||||
HostDeviceVector<float> storage;
|
HostDeviceVector<float> storage;
|
||||||
std::string interface_str = RandomDataGenerator{kRows, kCols, 0}
|
std::string interface_str = RandomDataGenerator{kRows, kCols, 0}
|
||||||
.Device(0)
|
.Device(0)
|
||||||
@ -402,7 +405,7 @@ TEST(GPUQuantile, AllReduceBasic) {
|
|||||||
sketch_on_single_node.Data().size());
|
sketch_on_single_node.Data().size());
|
||||||
|
|
||||||
TestQuantileElemRank(0, sketch_distributed.Data(),
|
TestQuantileElemRank(0, sketch_distributed.Data(),
|
||||||
sketch_distributed.ColumnsPtr());
|
sketch_distributed.ColumnsPtr(), true);
|
||||||
|
|
||||||
std::vector<SketchEntry> single_node_data(
|
std::vector<SketchEntry> single_node_data(
|
||||||
sketch_on_single_node.Data().size());
|
sketch_on_single_node.Data().size());
|
||||||
@ -432,13 +435,15 @@ TEST(GPUQuantile, SameOnAllWorkers) {
|
|||||||
} else {
|
} else {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
auto reducer = std::make_shared<dh::AllReducer>();
|
||||||
|
reducer->Init(0);
|
||||||
|
|
||||||
constexpr size_t kRows = 1000, kCols = 100;
|
constexpr size_t kRows = 1000, kCols = 100;
|
||||||
RunWithSeedsAndBins(kRows, [=](int32_t seed, size_t n_bins,
|
RunWithSeedsAndBins(kRows, [=](int32_t seed, size_t n_bins,
|
||||||
MetaInfo const &info) {
|
MetaInfo const &info) {
|
||||||
auto rank = rabit::GetRank();
|
auto rank = rabit::GetRank();
|
||||||
HostDeviceVector<FeatureType> ft;
|
HostDeviceVector<FeatureType> ft;
|
||||||
SketchContainer sketch_distributed(ft, n_bins, kCols, kRows, 0);
|
SketchContainer sketch_distributed(ft, n_bins, kCols, kRows, 0, reducer);
|
||||||
HostDeviceVector<float> storage;
|
HostDeviceVector<float> storage;
|
||||||
std::string interface_str = RandomDataGenerator{kRows, kCols, 0}
|
std::string interface_str = RandomDataGenerator{kRows, kCols, 0}
|
||||||
.Device(0)
|
.Device(0)
|
||||||
@ -450,7 +455,7 @@ TEST(GPUQuantile, SameOnAllWorkers) {
|
|||||||
&sketch_distributed);
|
&sketch_distributed);
|
||||||
sketch_distributed.AllReduce();
|
sketch_distributed.AllReduce();
|
||||||
sketch_distributed.Unique();
|
sketch_distributed.Unique();
|
||||||
TestQuantileElemRank(0, sketch_distributed.Data(), sketch_distributed.ColumnsPtr());
|
TestQuantileElemRank(0, sketch_distributed.Data(), sketch_distributed.ColumnsPtr(), true);
|
||||||
|
|
||||||
// Test for all workers having the same sketch.
|
// Test for all workers having the same sketch.
|
||||||
size_t n_data = sketch_distributed.Data().size();
|
size_t n_data = sketch_distributed.Data().size();
|
||||||
@ -467,12 +472,9 @@ TEST(GPUQuantile, SameOnAllWorkers) {
|
|||||||
thrust::copy(thrust::device, local_data.data(),
|
thrust::copy(thrust::device, local_data.data(),
|
||||||
local_data.data() + local_data.size(),
|
local_data.data() + local_data.size(),
|
||||||
all_workers.begin() + local_data.size() * rank);
|
all_workers.begin() + local_data.size() * rank);
|
||||||
dh::AllReducer reducer;
|
reducer->AllReduceSum(all_workers.data().get(), all_workers.data().get(),
|
||||||
reducer.Init(0);
|
|
||||||
|
|
||||||
reducer.AllReduceSum(all_workers.data().get(), all_workers.data().get(),
|
|
||||||
all_workers.size());
|
all_workers.size());
|
||||||
reducer.Synchronize();
|
reducer->Synchronize();
|
||||||
|
|
||||||
auto base_line = dh::ToSpan(all_workers).subspan(0, size_as_float);
|
auto base_line = dh::ToSpan(all_workers).subspan(0, size_as_float);
|
||||||
std::vector<float> h_base_line(base_line.size());
|
std::vector<float> h_base_line(base_line.size());
|
||||||
|
|||||||
@ -37,12 +37,12 @@ inline void InitRabitContext(std::string msg, int32_t n_workers) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
template <typename Fn> void RunWithSeedsAndBins(size_t rows, Fn fn) {
|
template <typename Fn> void RunWithSeedsAndBins(size_t rows, Fn fn) {
|
||||||
std::vector<int32_t> seeds(4);
|
std::vector<int32_t> seeds(2);
|
||||||
SimpleLCG lcg;
|
SimpleLCG lcg;
|
||||||
SimpleRealUniformDistribution<float> dist(3, 1000);
|
SimpleRealUniformDistribution<float> dist(3, 1000);
|
||||||
std::generate(seeds.begin(), seeds.end(), [&](){ return dist(&lcg); });
|
std::generate(seeds.begin(), seeds.end(), [&](){ return dist(&lcg); });
|
||||||
|
|
||||||
std::vector<size_t> bins(8);
|
std::vector<size_t> bins(2);
|
||||||
for (size_t i = 0; i < bins.size() - 1; ++i) {
|
for (size_t i = 0; i < bins.size() - 1; ++i) {
|
||||||
bins[i] = i * 35 + 2;
|
bins[i] = i * 35 + 2;
|
||||||
}
|
}
|
||||||
|
|||||||
@ -22,8 +22,8 @@ def setup_rmm_pool(request, pytestconfig):
|
|||||||
rmm.reinitialize(pool_allocator=True, initial_pool_size=1024*1024*1024,
|
rmm.reinitialize(pool_allocator=True, initial_pool_size=1024*1024*1024,
|
||||||
devices=list(range(get_n_gpus())))
|
devices=list(range(get_n_gpus())))
|
||||||
|
|
||||||
@pytest.fixture(scope='function')
|
@pytest.fixture(scope='class')
|
||||||
def local_cuda_cluster(request, pytestconfig):
|
def local_cuda_client(request, pytestconfig):
|
||||||
kwargs = {}
|
kwargs = {}
|
||||||
if hasattr(request, 'param'):
|
if hasattr(request, 'param'):
|
||||||
kwargs.update(request.param)
|
kwargs.update(request.param)
|
||||||
@ -31,13 +31,12 @@ def local_cuda_cluster(request, pytestconfig):
|
|||||||
if not has_rmm():
|
if not has_rmm():
|
||||||
raise ImportError('The --use-rmm-pool option requires the RMM package')
|
raise ImportError('The --use-rmm-pool option requires the RMM package')
|
||||||
import rmm
|
import rmm
|
||||||
from dask_cuda.utils import get_n_gpus
|
|
||||||
kwargs['rmm_pool_size'] = '2GB'
|
kwargs['rmm_pool_size'] = '2GB'
|
||||||
if tm.no_dask_cuda()['condition']:
|
if tm.no_dask_cuda()['condition']:
|
||||||
raise ImportError('The local_cuda_cluster fixture requires dask_cuda package')
|
raise ImportError('The local_cuda_cluster fixture requires dask_cuda package')
|
||||||
from dask_cuda import LocalCUDACluster
|
from dask_cuda import LocalCUDACluster
|
||||||
with LocalCUDACluster(**kwargs) as cluster:
|
from dask.distributed import Client
|
||||||
yield cluster
|
yield Client(LocalCUDACluster(**kwargs))
|
||||||
|
|
||||||
def pytest_addoption(parser):
|
def pytest_addoption(parser):
|
||||||
parser.addoption('--use-rmm-pool', action='store_true', default=False, help='Use RMM pool')
|
parser.addoption('--use-rmm-pool', action='store_true', default=False, help='Use RMM pool')
|
||||||
|
|||||||
@ -32,8 +32,5 @@ def test_categorical_demo():
|
|||||||
@pytest.mark.mgpu
|
@pytest.mark.mgpu
|
||||||
def test_dask_training():
|
def test_dask_training():
|
||||||
script = os.path.join(tm.PROJECT_ROOT, 'demo', 'dask', 'gpu_training.py')
|
script = os.path.join(tm.PROJECT_ROOT, 'demo', 'dask', 'gpu_training.py')
|
||||||
cmd = ['python', script, '--ddqdm=1']
|
cmd = ['python', script]
|
||||||
subprocess.check_call(cmd)
|
|
||||||
|
|
||||||
cmd = ['python', script, '--ddqdm=0']
|
|
||||||
subprocess.check_call(cmd)
|
subprocess.check_call(cmd)
|
||||||
@ -45,7 +45,7 @@ try:
|
|||||||
import xgboost as xgb
|
import xgboost as xgb
|
||||||
from dask.distributed import Client
|
from dask.distributed import Client
|
||||||
from dask import array as da
|
from dask import array as da
|
||||||
from dask_cuda import LocalCUDACluster
|
from dask_cuda import LocalCUDACluster, utils
|
||||||
import cudf
|
import cudf
|
||||||
except ImportError:
|
except ImportError:
|
||||||
pass
|
pass
|
||||||
@ -53,6 +53,7 @@ except ImportError:
|
|||||||
|
|
||||||
def run_with_dask_dataframe(DMatrixT: Type, client: Client) -> None:
|
def run_with_dask_dataframe(DMatrixT: Type, client: Client) -> None:
|
||||||
import cupy as cp
|
import cupy as cp
|
||||||
|
|
||||||
cp.cuda.runtime.setDevice(0)
|
cp.cuda.runtime.setDevice(0)
|
||||||
X, y, _ = generate_array()
|
X, y, _ = generate_array()
|
||||||
|
|
||||||
@ -63,14 +64,16 @@ def run_with_dask_dataframe(DMatrixT: Type, client: Client) -> None:
|
|||||||
y = y.map_partitions(cudf.from_pandas)
|
y = y.map_partitions(cudf.from_pandas)
|
||||||
|
|
||||||
dtrain = DMatrixT(client, X, y)
|
dtrain = DMatrixT(client, X, y)
|
||||||
out = dxgb.train(client, {'tree_method': 'gpu_hist',
|
out = dxgb.train(
|
||||||
'debug_synchronize': True},
|
client,
|
||||||
|
{"tree_method": "gpu_hist", "debug_synchronize": True},
|
||||||
dtrain=dtrain,
|
dtrain=dtrain,
|
||||||
evals=[(dtrain, 'X')],
|
evals=[(dtrain, "X")],
|
||||||
num_boost_round=4)
|
num_boost_round=4,
|
||||||
|
)
|
||||||
|
|
||||||
assert isinstance(out['booster'], dxgb.Booster)
|
assert isinstance(out["booster"], dxgb.Booster)
|
||||||
assert len(out['history']['X']['rmse']) == 4
|
assert len(out["history"]["X"]["rmse"]) == 4
|
||||||
|
|
||||||
predictions = dxgb.predict(client, out, dtrain)
|
predictions = dxgb.predict(client, out, dtrain)
|
||||||
assert isinstance(predictions.compute(), np.ndarray)
|
assert isinstance(predictions.compute(), np.ndarray)
|
||||||
@ -78,27 +81,23 @@ def run_with_dask_dataframe(DMatrixT: Type, client: Client) -> None:
|
|||||||
series_predictions = dxgb.inplace_predict(client, out, X)
|
series_predictions = dxgb.inplace_predict(client, out, X)
|
||||||
assert isinstance(series_predictions, dd.Series)
|
assert isinstance(series_predictions, dd.Series)
|
||||||
|
|
||||||
single_node = out['booster'].predict(xgboost.DMatrix(X.compute()))
|
single_node = out["booster"].predict(xgboost.DMatrix(X.compute()))
|
||||||
|
|
||||||
cp.testing.assert_allclose(single_node, predictions.compute())
|
cp.testing.assert_allclose(single_node, predictions.compute())
|
||||||
np.testing.assert_allclose(single_node,
|
np.testing.assert_allclose(single_node, series_predictions.compute().to_numpy())
|
||||||
series_predictions.compute().to_numpy())
|
|
||||||
|
|
||||||
predt = dxgb.predict(client, out, X)
|
predt = dxgb.predict(client, out, X)
|
||||||
assert isinstance(predt, dd.Series)
|
assert isinstance(predt, dd.Series)
|
||||||
|
|
||||||
T = TypeVar('T')
|
T = TypeVar("T")
|
||||||
|
|
||||||
def is_df(part: T) -> T:
|
def is_df(part: T) -> T:
|
||||||
assert isinstance(part, cudf.DataFrame), part
|
assert isinstance(part, cudf.DataFrame), part
|
||||||
return part
|
return part
|
||||||
|
|
||||||
predt.map_partitions(
|
predt.map_partitions(is_df, meta=dd.utils.make_meta({"prediction": "f4"}))
|
||||||
is_df,
|
|
||||||
meta=dd.utils.make_meta({'prediction': 'f4'}))
|
|
||||||
|
|
||||||
cp.testing.assert_allclose(
|
cp.testing.assert_allclose(predt.values.compute(), single_node)
|
||||||
predt.values.compute(), single_node)
|
|
||||||
|
|
||||||
# Make sure the output can be integrated back to original dataframe
|
# Make sure the output can be integrated back to original dataframe
|
||||||
X["predict"] = predictions
|
X["predict"] = predictions
|
||||||
@ -110,49 +109,35 @@ def run_with_dask_dataframe(DMatrixT: Type, client: Client) -> None:
|
|||||||
|
|
||||||
def run_with_dask_array(DMatrixT: Type, client: Client) -> None:
|
def run_with_dask_array(DMatrixT: Type, client: Client) -> None:
|
||||||
import cupy as cp
|
import cupy as cp
|
||||||
|
|
||||||
cp.cuda.runtime.setDevice(0)
|
cp.cuda.runtime.setDevice(0)
|
||||||
X, y, _ = generate_array()
|
X, y, _ = generate_array()
|
||||||
|
|
||||||
X = X.map_blocks(cp.asarray)
|
X = X.map_blocks(cp.asarray)
|
||||||
y = y.map_blocks(cp.asarray)
|
y = y.map_blocks(cp.asarray)
|
||||||
dtrain = DMatrixT(client, X, y)
|
dtrain = DMatrixT(client, X, y)
|
||||||
out = dxgb.train(client, {'tree_method': 'gpu_hist',
|
out = dxgb.train(
|
||||||
'debug_synchronize': True},
|
client,
|
||||||
|
{"tree_method": "gpu_hist", "debug_synchronize": True},
|
||||||
dtrain=dtrain,
|
dtrain=dtrain,
|
||||||
evals=[(dtrain, 'X')],
|
evals=[(dtrain, "X")],
|
||||||
num_boost_round=2)
|
num_boost_round=2,
|
||||||
|
)
|
||||||
from_dmatrix = dxgb.predict(client, out, dtrain).compute()
|
from_dmatrix = dxgb.predict(client, out, dtrain).compute()
|
||||||
inplace_predictions = dxgb.inplace_predict(
|
inplace_predictions = dxgb.inplace_predict(client, out, X).compute()
|
||||||
client, out, X).compute()
|
single_node = out["booster"].predict(xgboost.DMatrix(X.compute()))
|
||||||
single_node = out['booster'].predict(
|
|
||||||
xgboost.DMatrix(X.compute()))
|
|
||||||
np.testing.assert_allclose(single_node, from_dmatrix)
|
np.testing.assert_allclose(single_node, from_dmatrix)
|
||||||
device = cp.cuda.runtime.getDevice()
|
device = cp.cuda.runtime.getDevice()
|
||||||
assert device == inplace_predictions.device.id
|
assert device == inplace_predictions.device.id
|
||||||
single_node = cp.array(single_node)
|
single_node = cp.array(single_node)
|
||||||
assert device == single_node.device.id
|
assert device == single_node.device.id
|
||||||
cp.testing.assert_allclose(
|
cp.testing.assert_allclose(single_node, inplace_predictions)
|
||||||
single_node,
|
|
||||||
inplace_predictions)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_dask_cudf())
|
|
||||||
def test_categorical(local_cuda_cluster: LocalCUDACluster) -> None:
|
|
||||||
with Client(local_cuda_cluster) as client:
|
|
||||||
import dask_cudf
|
|
||||||
|
|
||||||
X, y = make_categorical(client, 10000, 30, 13)
|
|
||||||
X = dask_cudf.from_dask_dataframe(X)
|
|
||||||
|
|
||||||
X_onehot, _ = make_categorical(client, 10000, 30, 13, True)
|
|
||||||
X_onehot = dask_cudf.from_dask_dataframe(X_onehot)
|
|
||||||
run_categorical(client, "gpu_hist", X, X_onehot, y)
|
|
||||||
|
|
||||||
|
|
||||||
def to_cp(x: Any, DMatrixT: Type) -> Any:
|
def to_cp(x: Any, DMatrixT: Type) -> Any:
|
||||||
import cupy
|
import cupy
|
||||||
if isinstance(x, np.ndarray) and \
|
|
||||||
DMatrixT is dxgb.DaskDeviceQuantileDMatrix:
|
if isinstance(x, np.ndarray) and DMatrixT is dxgb.DaskDeviceQuantileDMatrix:
|
||||||
X = cupy.array(x)
|
X = cupy.array(x)
|
||||||
else:
|
else:
|
||||||
X = x
|
X = x
|
||||||
@ -213,126 +198,155 @@ def run_gpu_hist(
|
|||||||
assert tm.non_increasing(history)
|
assert tm.non_increasing(history)
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_cudf())
|
def test_tree_stats() -> None:
|
||||||
def test_boost_from_prediction(local_cuda_cluster: LocalCUDACluster) -> None:
|
with LocalCUDACluster(n_workers=1) as cluster:
|
||||||
import cudf
|
with Client(cluster) as client:
|
||||||
from sklearn.datasets import load_breast_cancer, load_digits
|
local = run_tree_stats(client, "gpu_hist")
|
||||||
with Client(local_cuda_cluster) as client:
|
|
||||||
X_, y_ = load_breast_cancer(return_X_y=True)
|
|
||||||
X = dd.from_array(X_, chunksize=100).map_partitions(cudf.from_pandas)
|
|
||||||
y = dd.from_array(y_, chunksize=100).map_partitions(cudf.from_pandas)
|
|
||||||
run_boost_from_prediction(X, y, "gpu_hist", client)
|
|
||||||
|
|
||||||
X_, y_ = load_digits(return_X_y=True)
|
with LocalCUDACluster(n_workers=2) as cluster:
|
||||||
X = dd.from_array(X_, chunksize=100).map_partitions(cudf.from_pandas)
|
with Client(cluster) as client:
|
||||||
y = dd.from_array(y_, chunksize=100).map_partitions(cudf.from_pandas)
|
distributed = run_tree_stats(client, "gpu_hist")
|
||||||
run_boost_from_prediction_multi_class(X, y, "gpu_hist", client)
|
|
||||||
|
assert local == distributed
|
||||||
|
|
||||||
|
|
||||||
class TestDistributedGPU:
|
class TestDistributedGPU:
|
||||||
|
@pytest.mark.skipif(**tm.no_cudf())
|
||||||
|
def test_boost_from_prediction(self, local_cuda_client: Client) -> None:
|
||||||
|
import cudf
|
||||||
|
from sklearn.datasets import load_breast_cancer, load_iris
|
||||||
|
|
||||||
|
X_, y_ = load_breast_cancer(return_X_y=True)
|
||||||
|
X = dd.from_array(X_, chunksize=100).map_partitions(cudf.from_pandas)
|
||||||
|
y = dd.from_array(y_, chunksize=100).map_partitions(cudf.from_pandas)
|
||||||
|
run_boost_from_prediction(X, y, "gpu_hist", local_cuda_client)
|
||||||
|
|
||||||
|
X_, y_ = load_iris(return_X_y=True)
|
||||||
|
X = dd.from_array(X_, chunksize=50).map_partitions(cudf.from_pandas)
|
||||||
|
y = dd.from_array(y_, chunksize=50).map_partitions(cudf.from_pandas)
|
||||||
|
run_boost_from_prediction_multi_class(X, y, "gpu_hist", local_cuda_client)
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_dask_cudf())
|
@pytest.mark.skipif(**tm.no_dask_cudf())
|
||||||
def test_dask_dataframe(self, local_cuda_cluster: LocalCUDACluster) -> None:
|
def test_dask_dataframe(self, local_cuda_client: Client) -> None:
|
||||||
with Client(local_cuda_cluster) as client:
|
run_with_dask_dataframe(dxgb.DaskDMatrix, local_cuda_client)
|
||||||
run_with_dask_dataframe(dxgb.DaskDMatrix, client)
|
run_with_dask_dataframe(dxgb.DaskDeviceQuantileDMatrix, local_cuda_client)
|
||||||
run_with_dask_dataframe(dxgb.DaskDeviceQuantileDMatrix, client)
|
|
||||||
|
@pytest.mark.skipif(**tm.no_dask_cudf())
|
||||||
|
def test_categorical(self, local_cuda_client: Client) -> None:
|
||||||
|
import dask_cudf
|
||||||
|
|
||||||
|
X, y = make_categorical(local_cuda_client, 10000, 30, 13)
|
||||||
|
X = dask_cudf.from_dask_dataframe(X)
|
||||||
|
|
||||||
|
X_onehot, _ = make_categorical(local_cuda_client, 10000, 30, 13, True)
|
||||||
|
X_onehot = dask_cudf.from_dask_dataframe(X_onehot)
|
||||||
|
run_categorical(local_cuda_client, "gpu_hist", X, X_onehot, y)
|
||||||
|
|
||||||
@given(
|
@given(
|
||||||
params=parameter_strategy,
|
params=parameter_strategy,
|
||||||
num_rounds=strategies.integers(1, 20),
|
num_rounds=strategies.integers(1, 20),
|
||||||
dataset=tm.dataset_strategy,
|
dataset=tm.dataset_strategy,
|
||||||
|
dmatrix_type=strategies.sampled_from(
|
||||||
|
[dxgb.DaskDMatrix, dxgb.DaskDeviceQuantileDMatrix]
|
||||||
|
),
|
||||||
|
)
|
||||||
|
@settings(
|
||||||
|
deadline=duration(seconds=120),
|
||||||
|
max_examples=20,
|
||||||
|
suppress_health_check=suppress,
|
||||||
|
print_blob=True,
|
||||||
)
|
)
|
||||||
@settings(deadline=duration(seconds=120), suppress_health_check=suppress, print_blob=True)
|
|
||||||
@pytest.mark.skipif(**tm.no_cupy())
|
@pytest.mark.skipif(**tm.no_cupy())
|
||||||
@pytest.mark.parametrize(
|
|
||||||
"local_cuda_cluster", [{"n_workers": 2}], indirect=["local_cuda_cluster"]
|
|
||||||
)
|
|
||||||
def test_gpu_hist(
|
def test_gpu_hist(
|
||||||
self,
|
self,
|
||||||
params: Dict,
|
params: Dict,
|
||||||
num_rounds: int,
|
num_rounds: int,
|
||||||
dataset: tm.TestDataset,
|
dataset: tm.TestDataset,
|
||||||
local_cuda_cluster: LocalCUDACluster,
|
dmatrix_type: type,
|
||||||
|
local_cuda_client: Client,
|
||||||
) -> None:
|
) -> None:
|
||||||
with Client(local_cuda_cluster) as client:
|
run_gpu_hist(params, num_rounds, dataset, dmatrix_type, local_cuda_client)
|
||||||
run_gpu_hist(params, num_rounds, dataset, dxgb.DaskDMatrix, client)
|
|
||||||
run_gpu_hist(
|
|
||||||
params, num_rounds, dataset, dxgb.DaskDeviceQuantileDMatrix, client
|
|
||||||
)
|
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_cupy())
|
@pytest.mark.skipif(**tm.no_cupy())
|
||||||
def test_dask_array(self, local_cuda_cluster: LocalCUDACluster) -> None:
|
def test_dask_array(self, local_cuda_client: Client) -> None:
|
||||||
with Client(local_cuda_cluster) as client:
|
run_with_dask_array(dxgb.DaskDMatrix, local_cuda_client)
|
||||||
run_with_dask_array(dxgb.DaskDMatrix, client)
|
run_with_dask_array(dxgb.DaskDeviceQuantileDMatrix, local_cuda_client)
|
||||||
run_with_dask_array(dxgb.DaskDeviceQuantileDMatrix, client)
|
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_cupy())
|
@pytest.mark.skipif(**tm.no_cupy())
|
||||||
def test_early_stopping(self, local_cuda_cluster: LocalCUDACluster) -> None:
|
def test_early_stopping(self, local_cuda_client: Client) -> None:
|
||||||
from sklearn.datasets import load_breast_cancer
|
from sklearn.datasets import load_breast_cancer
|
||||||
with Client(local_cuda_cluster) as client:
|
|
||||||
X, y = load_breast_cancer(return_X_y=True)
|
X, y = load_breast_cancer(return_X_y=True)
|
||||||
X, y = da.from_array(X), da.from_array(y)
|
X, y = da.from_array(X), da.from_array(y)
|
||||||
|
|
||||||
m = dxgb.DaskDMatrix(client, X, y)
|
m = dxgb.DaskDMatrix(local_cuda_client, X, y)
|
||||||
|
|
||||||
valid = dxgb.DaskDMatrix(client, X, y)
|
valid = dxgb.DaskDMatrix(local_cuda_client, X, y)
|
||||||
early_stopping_rounds = 5
|
early_stopping_rounds = 5
|
||||||
booster = dxgb.train(client, {'objective': 'binary:logistic',
|
booster = dxgb.train(
|
||||||
'eval_metric': 'error',
|
local_cuda_client,
|
||||||
'tree_method': 'gpu_hist'}, m,
|
{
|
||||||
evals=[(valid, 'Valid')],
|
"objective": "binary:logistic",
|
||||||
|
"eval_metric": "error",
|
||||||
|
"tree_method": "gpu_hist",
|
||||||
|
},
|
||||||
|
m,
|
||||||
|
evals=[(valid, "Valid")],
|
||||||
num_boost_round=1000,
|
num_boost_round=1000,
|
||||||
early_stopping_rounds=early_stopping_rounds)[
|
early_stopping_rounds=early_stopping_rounds,
|
||||||
'booster']
|
)["booster"]
|
||||||
assert hasattr(booster, 'best_score')
|
assert hasattr(booster, "best_score")
|
||||||
dump = booster.get_dump(dump_format='json')
|
dump = booster.get_dump(dump_format="json")
|
||||||
print(booster.best_iteration)
|
|
||||||
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
|
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
|
||||||
|
|
||||||
valid_X = X
|
valid_X = X
|
||||||
valid_y = y
|
valid_y = y
|
||||||
cls = dxgb.DaskXGBClassifier(objective='binary:logistic',
|
cls = dxgb.DaskXGBClassifier(
|
||||||
tree_method='gpu_hist',
|
objective="binary:logistic",
|
||||||
eval_metric='error',
|
tree_method="gpu_hist",
|
||||||
n_estimators=100)
|
eval_metric="error",
|
||||||
cls.client = client
|
n_estimators=100,
|
||||||
cls.fit(X, y, early_stopping_rounds=early_stopping_rounds,
|
)
|
||||||
eval_set=[(valid_X, valid_y)])
|
cls.client = local_cuda_client
|
||||||
|
cls.fit(
|
||||||
|
X,
|
||||||
|
y,
|
||||||
|
early_stopping_rounds=early_stopping_rounds,
|
||||||
|
eval_set=[(valid_X, valid_y)],
|
||||||
|
)
|
||||||
booster = cls.get_booster()
|
booster = cls.get_booster()
|
||||||
dump = booster.get_dump(dump_format='json')
|
dump = booster.get_dump(dump_format="json")
|
||||||
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
|
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_cudf())
|
@pytest.mark.skipif(**tm.no_cudf())
|
||||||
@pytest.mark.parametrize("model", ["boosting"])
|
@pytest.mark.parametrize("model", ["boosting"])
|
||||||
def test_dask_classifier(
|
def test_dask_classifier(self, model: str, local_cuda_client: Client) -> None:
|
||||||
self, model: str, local_cuda_cluster: LocalCUDACluster
|
|
||||||
) -> None:
|
|
||||||
import dask_cudf
|
import dask_cudf
|
||||||
with Client(local_cuda_cluster) as client:
|
|
||||||
X_, y_, w_ = generate_array(with_weights=True)
|
X_, y_, w_ = generate_array(with_weights=True)
|
||||||
y_ = (y_ * 10).astype(np.int32)
|
y_ = (y_ * 10).astype(np.int32)
|
||||||
X = dask_cudf.from_dask_dataframe(dd.from_dask_array(X_))
|
X = dask_cudf.from_dask_dataframe(dd.from_dask_array(X_))
|
||||||
y = dask_cudf.from_dask_dataframe(dd.from_dask_array(y_))
|
y = dask_cudf.from_dask_dataframe(dd.from_dask_array(y_))
|
||||||
w = dask_cudf.from_dask_dataframe(dd.from_dask_array(w_))
|
w = dask_cudf.from_dask_dataframe(dd.from_dask_array(w_))
|
||||||
run_dask_classifier(X, y, w, model, "gpu_hist", client, 10)
|
run_dask_classifier(X, y, w, model, "gpu_hist", local_cuda_client, 10)
|
||||||
|
|
||||||
def test_empty_dmatrix(self, local_cuda_cluster: LocalCUDACluster) -> None:
|
def test_empty_dmatrix(self, local_cuda_client: Client) -> None:
|
||||||
with Client(local_cuda_cluster) as client:
|
parameters = {"tree_method": "gpu_hist", "debug_synchronize": True}
|
||||||
parameters = {'tree_method': 'gpu_hist', 'debug_synchronize': True}
|
run_empty_dmatrix_reg(local_cuda_client, parameters)
|
||||||
run_empty_dmatrix_reg(client, parameters)
|
run_empty_dmatrix_cls(local_cuda_client, parameters)
|
||||||
run_empty_dmatrix_cls(client, parameters)
|
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_dask_cudf())
|
@pytest.mark.skipif(**tm.no_dask_cudf())
|
||||||
def test_empty_partition(self, local_cuda_cluster: LocalCUDACluster) -> None:
|
def test_empty_partition(self, local_cuda_client: Client) -> None:
|
||||||
import dask_cudf
|
import dask_cudf
|
||||||
import cudf
|
import cudf
|
||||||
import cupy
|
import cupy
|
||||||
with Client(local_cuda_cluster) as client:
|
|
||||||
mult = 100
|
mult = 100
|
||||||
df = cudf.DataFrame(
|
df = cudf.DataFrame(
|
||||||
{
|
{
|
||||||
"a": [1, 2, 3, 4, 5.1] * mult,
|
"a": [1, 2, 3, 4, 5.1] * mult,
|
||||||
"b": [10, 15, 29.3, 30, 31] * mult,
|
"b": [10, 15, 29.3, 30, 31] * mult,
|
||||||
"y": [10, 20, 30, 40., 50] * mult,
|
"y": [10, 20, 30, 40.0, 50] * mult,
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
parameters = {"tree_method": "gpu_hist", "debug_synchronize": True}
|
parameters = {"tree_method": "gpu_hist", "debug_synchronize": True}
|
||||||
@ -345,11 +359,11 @@ class TestDistributedGPU:
|
|||||||
)
|
)
|
||||||
X = ddf[ddf.columns.difference(["y"])]
|
X = ddf[ddf.columns.difference(["y"])]
|
||||||
y = ddf[["y"]]
|
y = ddf[["y"]]
|
||||||
dtrain = dxgb.DaskDeviceQuantileDMatrix(client, X, y)
|
dtrain = dxgb.DaskDeviceQuantileDMatrix(local_cuda_client, X, y)
|
||||||
bst_empty = xgb.dask.train(
|
bst_empty = xgb.dask.train(
|
||||||
client, parameters, dtrain, evals=[(dtrain, "train")]
|
local_cuda_client, parameters, dtrain, evals=[(dtrain, "train")]
|
||||||
)
|
)
|
||||||
predt_empty = dxgb.predict(client, bst_empty, X).compute().values
|
predt_empty = dxgb.predict(local_cuda_client, bst_empty, X).compute().values
|
||||||
|
|
||||||
ddf = dask_cudf.concat(
|
ddf = dask_cudf.concat(
|
||||||
[dask_cudf.from_cudf(df, npartitions=3)]
|
[dask_cudf.from_cudf(df, npartitions=3)]
|
||||||
@ -357,16 +371,18 @@ class TestDistributedGPU:
|
|||||||
)
|
)
|
||||||
X = ddf[ddf.columns.difference(["y"])]
|
X = ddf[ddf.columns.difference(["y"])]
|
||||||
y = ddf[["y"]]
|
y = ddf[["y"]]
|
||||||
dtrain = dxgb.DaskDeviceQuantileDMatrix(client, X, y)
|
dtrain = dxgb.DaskDeviceQuantileDMatrix(local_cuda_client, X, y)
|
||||||
bst = xgb.dask.train(client, parameters, dtrain, evals=[(dtrain, "train")])
|
bst = xgb.dask.train(
|
||||||
|
local_cuda_client, parameters, dtrain, evals=[(dtrain, "train")]
|
||||||
|
)
|
||||||
|
|
||||||
predt = dxgb.predict(client, bst, X).compute().values
|
predt = dxgb.predict(local_cuda_client, bst, X).compute().values
|
||||||
cupy.testing.assert_allclose(predt, predt_empty)
|
cupy.testing.assert_allclose(predt, predt_empty)
|
||||||
|
|
||||||
predt = dxgb.predict(client, bst, dtrain).compute()
|
predt = dxgb.predict(local_cuda_client, bst, dtrain).compute()
|
||||||
cupy.testing.assert_allclose(predt, predt_empty)
|
cupy.testing.assert_allclose(predt, predt_empty)
|
||||||
|
|
||||||
predt = dxgb.inplace_predict(client, bst, X).compute().values
|
predt = dxgb.inplace_predict(local_cuda_client, bst, X).compute().values
|
||||||
cupy.testing.assert_allclose(predt, predt_empty)
|
cupy.testing.assert_allclose(predt, predt_empty)
|
||||||
|
|
||||||
df = df.to_pandas()
|
df = df.to_pandas()
|
||||||
@ -381,30 +397,32 @@ class TestDistributedGPU:
|
|||||||
|
|
||||||
predt_empty = cupy.asnumpy(predt_empty)
|
predt_empty = cupy.asnumpy(predt_empty)
|
||||||
|
|
||||||
predt = dxgb.predict(client, bst_empty, X).compute().values
|
predt = dxgb.predict(local_cuda_client, bst_empty, X).compute().values
|
||||||
np.testing.assert_allclose(predt, predt_empty)
|
np.testing.assert_allclose(predt, predt_empty)
|
||||||
|
|
||||||
in_predt = dxgb.inplace_predict(client, bst_empty, X).compute().values
|
in_predt = (
|
||||||
|
dxgb.inplace_predict(local_cuda_client, bst_empty, X).compute().values
|
||||||
|
)
|
||||||
np.testing.assert_allclose(predt, in_predt)
|
np.testing.assert_allclose(predt, in_predt)
|
||||||
|
|
||||||
def test_empty_dmatrix_auc(self, local_cuda_cluster: LocalCUDACluster) -> None:
|
def test_empty_dmatrix_auc(self, local_cuda_client: Client) -> None:
|
||||||
with Client(local_cuda_cluster) as client:
|
n_workers = len(_get_client_workers(local_cuda_client))
|
||||||
n_workers = len(_get_client_workers(client))
|
run_empty_dmatrix_auc(local_cuda_client, "gpu_hist", n_workers)
|
||||||
run_empty_dmatrix_auc(client, "gpu_hist", n_workers)
|
|
||||||
|
|
||||||
def test_auc(self, local_cuda_cluster: LocalCUDACluster) -> None:
|
def test_auc(self, local_cuda_client: Client) -> None:
|
||||||
with Client(local_cuda_cluster) as client:
|
run_auc(local_cuda_client, "gpu_hist")
|
||||||
run_auc(client, "gpu_hist")
|
|
||||||
|
def test_data_initialization(self, local_cuda_client: Client) -> None:
|
||||||
|
|
||||||
def test_data_initialization(self, local_cuda_cluster: LocalCUDACluster) -> None:
|
|
||||||
with Client(local_cuda_cluster) as client:
|
|
||||||
X, y, _ = generate_array()
|
X, y, _ = generate_array()
|
||||||
fw = da.random.random((random_cols, ))
|
fw = da.random.random((random_cols,))
|
||||||
fw = fw - fw.min()
|
fw = fw - fw.min()
|
||||||
m = dxgb.DaskDMatrix(client, X, y, feature_weights=fw)
|
m = dxgb.DaskDMatrix(local_cuda_client, X, y, feature_weights=fw)
|
||||||
|
|
||||||
workers = _get_client_workers(client)
|
workers = _get_client_workers(local_cuda_client)
|
||||||
rabit_args = client.sync(dxgb._get_rabit_args, len(workers), None, client)
|
rabit_args = local_cuda_client.sync(
|
||||||
|
dxgb._get_rabit_args, len(workers), None, local_cuda_client
|
||||||
|
)
|
||||||
|
|
||||||
def worker_fn(worker_addr: str, data_ref: Dict) -> None:
|
def worker_fn(worker_addr: str, data_ref: Dict) -> None:
|
||||||
with dxgb.RabitContext(rabit_args):
|
with dxgb.RabitContext(rabit_args):
|
||||||
@ -415,15 +433,15 @@ class TestDistributedGPU:
|
|||||||
futures = []
|
futures = []
|
||||||
for i in range(len(workers)):
|
for i in range(len(workers)):
|
||||||
futures.append(
|
futures.append(
|
||||||
client.submit(
|
local_cuda_client.submit(
|
||||||
worker_fn,
|
worker_fn,
|
||||||
workers[i],
|
workers[i],
|
||||||
m._create_fn_args(workers[i]),
|
m._create_fn_args(workers[i]),
|
||||||
pure=False,
|
pure=False,
|
||||||
workers=[workers[i]]
|
workers=[workers[i]],
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
client.gather(futures)
|
local_cuda_client.gather(futures)
|
||||||
|
|
||||||
def test_interface_consistency(self) -> None:
|
def test_interface_consistency(self) -> None:
|
||||||
sig = OrderedDict(signature(dxgb.DaskDMatrix).parameters)
|
sig = OrderedDict(signature(dxgb.DaskDMatrix).parameters)
|
||||||
@ -470,81 +488,79 @@ class TestDistributedGPU:
|
|||||||
for rn, drn in zip(ranker_names, dranker_names):
|
for rn, drn in zip(ranker_names, dranker_names):
|
||||||
assert rn == drn
|
assert rn == drn
|
||||||
|
|
||||||
def test_tree_stats(self) -> None:
|
def run_quantile(self, name: str, local_cuda_client: Client) -> None:
|
||||||
with LocalCUDACluster(n_workers=1) as cluster:
|
|
||||||
with Client(cluster) as client:
|
|
||||||
local = run_tree_stats(client, "gpu_hist")
|
|
||||||
|
|
||||||
with LocalCUDACluster(n_workers=2) as cluster:
|
|
||||||
with Client(cluster) as client:
|
|
||||||
distributed = run_tree_stats(client, "gpu_hist")
|
|
||||||
|
|
||||||
assert local == distributed
|
|
||||||
|
|
||||||
def run_quantile(self, name: str, local_cuda_cluster: LocalCUDACluster) -> None:
|
|
||||||
if sys.platform.startswith("win"):
|
if sys.platform.startswith("win"):
|
||||||
pytest.skip("Skipping dask tests on Windows")
|
pytest.skip("Skipping dask tests on Windows")
|
||||||
|
|
||||||
exe = None
|
exe = None
|
||||||
for possible_path in {'./testxgboost', './build/testxgboost',
|
for possible_path in {
|
||||||
'../build/testxgboost', '../gpu-build/testxgboost'}:
|
"./testxgboost",
|
||||||
|
"./build/testxgboost",
|
||||||
|
"../build/testxgboost",
|
||||||
|
"../gpu-build/testxgboost",
|
||||||
|
}:
|
||||||
if os.path.exists(possible_path):
|
if os.path.exists(possible_path):
|
||||||
exe = possible_path
|
exe = possible_path
|
||||||
assert exe, 'No testxgboost executable found.'
|
assert exe, "No testxgboost executable found."
|
||||||
test = "--gtest_filter=GPUQuantile." + name
|
test = "--gtest_filter=GPUQuantile." + name
|
||||||
|
|
||||||
def runit(
|
def runit(
|
||||||
worker_addr: str, rabit_args: List[bytes]
|
worker_addr: str, rabit_args: List[bytes]
|
||||||
) -> subprocess.CompletedProcess:
|
) -> subprocess.CompletedProcess:
|
||||||
port_env = ''
|
port_env = ""
|
||||||
# setup environment for running the c++ part.
|
# setup environment for running the c++ part.
|
||||||
for arg in rabit_args:
|
for arg in rabit_args:
|
||||||
if arg.decode('utf-8').startswith('DMLC_TRACKER_PORT'):
|
if arg.decode("utf-8").startswith("DMLC_TRACKER_PORT"):
|
||||||
port_env = arg.decode('utf-8')
|
port_env = arg.decode("utf-8")
|
||||||
if arg.decode("utf-8").startswith("DMLC_TRACKER_URI"):
|
if arg.decode("utf-8").startswith("DMLC_TRACKER_URI"):
|
||||||
uri_env = arg.decode("utf-8")
|
uri_env = arg.decode("utf-8")
|
||||||
port = port_env.split('=')
|
port = port_env.split("=")
|
||||||
env = os.environ.copy()
|
env = os.environ.copy()
|
||||||
env[port[0]] = port[1]
|
env[port[0]] = port[1]
|
||||||
uri = uri_env.split("=")
|
uri = uri_env.split("=")
|
||||||
env[uri[0]] = uri[1]
|
env[uri[0]] = uri[1]
|
||||||
return subprocess.run([str(exe), test], env=env, stdout=subprocess.PIPE)
|
return subprocess.run([str(exe), test], env=env, stdout=subprocess.PIPE)
|
||||||
|
|
||||||
with Client(local_cuda_cluster) as client:
|
workers = _get_client_workers(local_cuda_client)
|
||||||
workers = _get_client_workers(client)
|
rabit_args = local_cuda_client.sync(
|
||||||
rabit_args = client.sync(dxgb._get_rabit_args, len(workers), None, client)
|
dxgb._get_rabit_args, len(workers), None, local_cuda_client
|
||||||
futures = client.map(runit,
|
)
|
||||||
workers,
|
futures = local_cuda_client.map(
|
||||||
pure=False,
|
runit, workers, pure=False, workers=workers, rabit_args=rabit_args
|
||||||
workers=workers,
|
)
|
||||||
rabit_args=rabit_args)
|
results = local_cuda_client.gather(futures)
|
||||||
results = client.gather(futures)
|
|
||||||
for ret in results:
|
for ret in results:
|
||||||
msg = ret.stdout.decode('utf-8')
|
msg = ret.stdout.decode("utf-8")
|
||||||
assert msg.find('1 test from GPUQuantile') != -1, msg
|
assert msg.find("1 test from GPUQuantile") != -1, msg
|
||||||
assert ret.returncode == 0, msg
|
assert ret.returncode == 0, msg
|
||||||
|
|
||||||
@pytest.mark.gtest
|
@pytest.mark.gtest
|
||||||
def test_quantile_basic(self, local_cuda_cluster: LocalCUDACluster) -> None:
|
def test_quantile_basic(self, local_cuda_client: Client) -> None:
|
||||||
self.run_quantile('AllReduceBasic', local_cuda_cluster)
|
self.run_quantile("AllReduceBasic", local_cuda_client)
|
||||||
|
|
||||||
@pytest.mark.gtest
|
@pytest.mark.gtest
|
||||||
def test_quantile_same_on_all_workers(
|
def test_quantile_same_on_all_workers(self, local_cuda_client: Client) -> None:
|
||||||
self, local_cuda_cluster: LocalCUDACluster
|
self.run_quantile("SameOnAllWorkers", local_cuda_client)
|
||||||
) -> None:
|
|
||||||
self.run_quantile('SameOnAllWorkers', local_cuda_cluster)
|
|
||||||
|
@pytest.mark.skipif(**tm.no_cupy())
|
||||||
|
def test_with_asyncio(local_cuda_client: Client) -> None:
|
||||||
|
address = local_cuda_client.scheduler.address
|
||||||
|
output = asyncio.run(run_from_dask_array_asyncio(address))
|
||||||
|
assert isinstance(output["booster"], xgboost.Booster)
|
||||||
|
assert isinstance(output["history"], dict)
|
||||||
|
|
||||||
|
|
||||||
async def run_from_dask_array_asyncio(scheduler_address: str) -> dxgb.TrainReturnT:
|
async def run_from_dask_array_asyncio(scheduler_address: str) -> dxgb.TrainReturnT:
|
||||||
async with Client(scheduler_address, asynchronous=True) as client:
|
async with Client(scheduler_address, asynchronous=True) as client:
|
||||||
import cupy as cp
|
import cupy as cp
|
||||||
|
|
||||||
X, y, _ = generate_array()
|
X, y, _ = generate_array()
|
||||||
X = X.map_blocks(cp.array)
|
X = X.map_blocks(cp.array)
|
||||||
y = y.map_blocks(cp.array)
|
y = y.map_blocks(cp.array)
|
||||||
|
|
||||||
m = await xgboost.dask.DaskDeviceQuantileDMatrix(client, X, y)
|
m = await xgboost.dask.DaskDeviceQuantileDMatrix(client, X, y)
|
||||||
output = await xgboost.dask.train(client, {'tree_method': 'gpu_hist'},
|
output = await xgboost.dask.train(client, {"tree_method": "gpu_hist"}, dtrain=m)
|
||||||
dtrain=m)
|
|
||||||
|
|
||||||
with_m = await xgboost.dask.predict(client, output, m)
|
with_m = await xgboost.dask.predict(client, output, m)
|
||||||
with_X = await xgboost.dask.predict(client, output, X)
|
with_X = await xgboost.dask.predict(client, output, X)
|
||||||
@ -553,19 +569,12 @@ async def run_from_dask_array_asyncio(scheduler_address: str) -> dxgb.TrainRetur
|
|||||||
assert isinstance(with_X, da.Array)
|
assert isinstance(with_X, da.Array)
|
||||||
assert isinstance(inplace, da.Array)
|
assert isinstance(inplace, da.Array)
|
||||||
|
|
||||||
cp.testing.assert_allclose(await client.compute(with_m),
|
cp.testing.assert_allclose(
|
||||||
await client.compute(with_X))
|
await client.compute(with_m), await client.compute(with_X)
|
||||||
cp.testing.assert_allclose(await client.compute(with_m),
|
)
|
||||||
await client.compute(inplace))
|
cp.testing.assert_allclose(
|
||||||
|
await client.compute(with_m), await client.compute(inplace)
|
||||||
|
)
|
||||||
|
|
||||||
client.shutdown()
|
client.shutdown()
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(**tm.no_cupy())
|
|
||||||
def test_with_asyncio(local_cuda_cluster: LocalCUDACluster) -> None:
|
|
||||||
with Client(local_cuda_cluster) as client:
|
|
||||||
address = client.scheduler.address
|
|
||||||
output = asyncio.run(run_from_dask_array_asyncio(address))
|
|
||||||
assert isinstance(output['booster'], xgboost.Booster)
|
|
||||||
assert isinstance(output['history'], dict)
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user