Merge pull request #528 from terrytangyuan/test

More Unit Tests for Python Package
This commit is contained in:
Tianqi Chen 2015-10-22 08:39:32 -07:00
commit d4d36eed45
5 changed files with 102 additions and 1 deletions

View File

@ -33,8 +33,9 @@ List of Contributors
- Skipper is the major contributor to the scikit-learn module of xgboost. - Skipper is the major contributor to the scikit-learn module of xgboost.
* [Zygmunt Zając](https://github.com/zygmuntz) * [Zygmunt Zając](https://github.com/zygmuntz)
- Zygmunt is the master behind the early stopping feature frequently used by kagglers. - Zygmunt is the master behind the early stopping feature frequently used by kagglers.
* [Ajinkya Kale](https://github.com/ajkl)
* [Yuan Tang](https://github.com/terrytangyuan) * [Yuan Tang](https://github.com/terrytangyuan)
- Yuan is the major contributor to unit tests in R and Python.
* [Ajinkya Kale](https://github.com/ajkl)
* [Boliang Chen](https://github.com/cblsjtu) * [Boliang Chen](https://github.com/cblsjtu)
* [Vadim Khotilovich](https://github.com/khotilov) * [Vadim Khotilovich](https://github.com/khotilov)
* [Yangqing Men](https://github.com/yanqingmen) * [Yangqing Men](https://github.com/yanqingmen)

View File

@ -5,6 +5,7 @@ import unittest
dpath = 'demo/data/' dpath = 'demo/data/'
rng = np.random.RandomState(1994)
class TestBasic(unittest.TestCase): class TestBasic(unittest.TestCase):

View File

@ -0,0 +1,19 @@
import xgboost as xgb
import numpy as np
from sklearn.datasets import load_digits
from sklearn.cross_validation import KFold, train_test_split
rng = np.random.RandomState(1994)
def test_early_stopping_nonparallel():
# digits = load_digits(2)
# X = digits['data']
# y = digits['target']
# X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# clf = xgb.XGBClassifier()
# clf.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc",
# eval_set=[(X_test, y_test)])
print("This test will be re-visited later. ")
# TODO: parallel test for early stopping
# TODO: comment out for now. Will re-visit later

View File

@ -5,6 +5,8 @@ dpath = 'demo/data/'
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test') dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
rng = np.random.RandomState(1994)
def test_glm(): def test_glm():
param = {'silent':1, 'objective':'binary:logistic', 'booster':'gblinear', 'alpha': 0.0001, 'lambda': 1 } param = {'silent':1, 'objective':'binary:logistic', 'booster':'gblinear', 'alpha': 0.0001, 'lambda': 1 }
watchlist = [(dtest,'eval'), (dtrain,'train')] watchlist = [(dtest,'eval'), (dtrain,'train')]
@ -29,6 +31,8 @@ def test_custom_objective():
def evalerror(preds, dtrain): def evalerror(preds, dtrain):
labels = dtrain.get_label() labels = dtrain.get_label()
return 'error', float(sum(labels != (preds > 0.0))) / len(labels) return 'error', float(sum(labels != (preds > 0.0))) / len(labels)
# test custom_objective in training
bst = xgb.train(param, dtrain, num_round, watchlist, logregobj, evalerror) bst = xgb.train(param, dtrain, num_round, watchlist, logregobj, evalerror)
assert isinstance(bst, xgb.core.Booster) assert isinstance(bst, xgb.core.Booster)
preds = bst.predict(dtest) preds = bst.predict(dtest)
@ -36,4 +40,23 @@ def test_custom_objective():
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds)) err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
assert err < 0.1 assert err < 0.1
# test custom_objective in cross-validation
xgb.cv(param, dtrain, num_round, nfold = 5, seed = 0,
obj = logregobj, feval=evalerror)
def test_fpreproc():
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic'}
num_round = 2
def fpreproc(dtrain, dtest, param):
label = dtrain.get_label()
ratio = float(np.sum(label == 0)) / np.sum(label==1)
param['scale_pos_weight'] = ratio
return (dtrain, dtest, param)
xgb.cv(param, dtrain, num_round, nfold=5,
metrics={'auc'}, seed = 0, fpreproc = fpreproc)
def test_show_stdv():
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic'}
num_round = 2
xgb.cv(param, dtrain, num_round, nfold=5,
metrics={'error'}, seed = 0, show_stdv = False)

View File

@ -0,0 +1,57 @@
import xgboost as xgb
import numpy as np
from sklearn.cross_validation import KFold, train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.grid_search import GridSearchCV
from sklearn.datasets import load_iris, load_digits, load_boston
rng = np.random.RandomState(1994)
def test_binary_classification():
digits = load_digits(2)
y = digits['target']
X = digits['data']
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
for train_index, test_index in kf:
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
preds = xgb_model.predict(X[test_index])
labels = y[test_index]
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
assert err < 0.1
def test_multiclass_classification():
iris = load_iris()
y = iris['target']
X = iris['data']
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
for train_index, test_index in kf:
xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index])
preds = xgb_model.predict(X[test_index])
labels = y[test_index]
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
assert err < 0.4
def test_boston_housing_regression():
boston = load_boston()
y = boston['target']
X = boston['data']
kf = KFold(y.shape[0], n_folds=2, shuffle=True, random_state=rng)
for train_index, test_index in kf:
xgb_model = xgb.XGBRegressor().fit(X[train_index],y[train_index])
preds = xgb_model.predict(X[test_index])
labels = y[test_index]
assert mean_squared_error(preds, labels) < 15
def test_parameter_tuning():
boston = load_boston()
y = boston['target']
X = boston['data']
xgb_model = xgb.XGBRegressor()
clf = GridSearchCV(xgb_model,
{'max_depth': [2,4,6],
'n_estimators': [50,100,200]}, verbose=1)
clf.fit(X,y)
assert clf.best_score_ < 0.7
assert clf.best_params_ == {'n_estimators': 100, 'max_depth': 4}