From d3f2dbe64ff3cfd1106c57c83bf00ae652a16a3a Mon Sep 17 00:00:00 2001 From: Jiaming Yuan Date: Fri, 26 Jan 2024 02:09:38 +0800 Subject: [PATCH] [dask] Add seed to demos. (#10009) --- demo/dask/cpu_training.py | 5 +++-- demo/dask/gpu_training.py | 7 +++++-- 2 files changed, 8 insertions(+), 4 deletions(-) diff --git a/demo/dask/cpu_training.py b/demo/dask/cpu_training.py index 0f3316741..00453740f 100644 --- a/demo/dask/cpu_training.py +++ b/demo/dask/cpu_training.py @@ -14,8 +14,9 @@ def main(client): # generate some random data for demonstration m = 100000 n = 100 - X = da.random.random(size=(m, n), chunks=100) - y = da.random.random(size=(m,), chunks=100) + rng = da.random.default_rng(1) + X = rng.normal(size=(m, n)) + y = X.sum(axis=1) # DaskDMatrix acts like normal DMatrix, works as a proxy for local # DMatrix scatter around workers. diff --git a/demo/dask/gpu_training.py b/demo/dask/gpu_training.py index fd5b35bf3..6096b87fc 100644 --- a/demo/dask/gpu_training.py +++ b/demo/dask/gpu_training.py @@ -2,6 +2,7 @@ Example of training with Dask on GPU ==================================== """ +import cupy as cp import dask_cudf from dask import array as da from dask import dataframe as dd @@ -72,10 +73,12 @@ if __name__ == "__main__": with LocalCUDACluster(n_workers=2, threads_per_worker=4) as cluster: with Client(cluster) as client: # generate some random data for demonstration + rng = da.random.default_rng(1) + m = 100000 n = 100 - X = da.random.random(size=(m, n), chunks=10000) - y = da.random.random(size=(m,), chunks=10000) + X = rng.normal(size=(m, n)) + y = X.sum(axis=1) print("Using DaskQuantileDMatrix") from_ddqdm = using_quantile_device_dmatrix(client, X, y)