Add tolerance to early stopping. (#6942)
This commit is contained in:
parent
894e9bc5d4
commit
d245bc891e
@ -487,25 +487,44 @@ class EarlyStopping(TrainingCallback):
|
||||
Whether to maximize evaluation metric. None means auto (discouraged).
|
||||
save_best
|
||||
Whether training should return the best model or the last model.
|
||||
abs_tol
|
||||
Absolute tolerance for early stopping condition.
|
||||
|
||||
.. versionadded:: 1.5.0
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
clf = xgboost.XGBClassifier(tree_method="gpu_hist")
|
||||
es = xgboost.callback.EarlyStopping(
|
||||
rounds=2,
|
||||
abs_tol=1e-3,
|
||||
save_best=True,
|
||||
maximize=False,
|
||||
data_name="validation_0",
|
||||
metric_name="mlogloss",
|
||||
)
|
||||
|
||||
X, y = load_digits(return_X_y=True)
|
||||
clf.fit(X, y, eval_set=[(X, y)], callbacks=[es])
|
||||
"""
|
||||
def __init__(self,
|
||||
rounds: int,
|
||||
metric_name: Optional[str] = None,
|
||||
data_name: Optional[str] = None,
|
||||
maximize: Optional[bool] = None,
|
||||
save_best: Optional[bool] = False) -> None:
|
||||
save_best: Optional[bool] = False,
|
||||
abs_tol: float = 0) -> None:
|
||||
self.data = data_name
|
||||
self.metric_name = metric_name
|
||||
self.rounds = rounds
|
||||
self.save_best = save_best
|
||||
self.maximize = maximize
|
||||
self.stopping_history: CallbackContainer.EvalsLog = {}
|
||||
self._tol = abs_tol
|
||||
if self._tol < 0:
|
||||
raise ValueError("tolerance must be greater or equal to 0.")
|
||||
|
||||
if self.maximize is not None:
|
||||
if self.maximize:
|
||||
self.improve_op = lambda x, y: x > y
|
||||
else:
|
||||
self.improve_op = lambda x, y: x < y
|
||||
self.improve_op = None
|
||||
|
||||
self.current_rounds: int = 0
|
||||
self.best_scores: dict = {}
|
||||
@ -517,18 +536,33 @@ class EarlyStopping(TrainingCallback):
|
||||
return model
|
||||
|
||||
def _update_rounds(self, score, name, metric, model, epoch) -> bool:
|
||||
def get_s(x):
|
||||
"""get score if it's cross validation history."""
|
||||
return x[0] if isinstance(x, tuple) else x
|
||||
|
||||
def maximize(new, best):
|
||||
return numpy.greater(get_s(new) + self._tol, get_s(best))
|
||||
|
||||
def minimize(new, best):
|
||||
return numpy.greater(get_s(best) + self._tol, get_s(new))
|
||||
|
||||
if self.maximize is None:
|
||||
# Just to be compatibility with old behavior before 1.3. We should let
|
||||
# user to decide.
|
||||
if self.maximize is None:
|
||||
maximize_metrics = ('auc', 'aucpr', 'map', 'ndcg', 'auc@',
|
||||
'aucpr@', 'map@', 'ndcg@')
|
||||
if any(metric.startswith(x) for x in maximize_metrics):
|
||||
self.improve_op = lambda x, y: x > y
|
||||
self.maximize = True
|
||||
else:
|
||||
self.improve_op = lambda x, y: x < y
|
||||
self.maximize = False
|
||||
|
||||
if self.maximize:
|
||||
self.improve_op = maximize
|
||||
else:
|
||||
self.improve_op = minimize
|
||||
|
||||
assert self.improve_op
|
||||
|
||||
if not self.stopping_history: # First round
|
||||
self.current_rounds = 0
|
||||
self.stopping_history[name] = {}
|
||||
|
||||
@ -126,6 +126,27 @@ class TestCallbacks:
|
||||
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
|
||||
assert len(early_stop.stopping_history['Train']['CustomErr']) == len(dump)
|
||||
|
||||
# test tolerance, early stop won't occur with high tolerance.
|
||||
tol = 10
|
||||
rounds = 100
|
||||
early_stop = xgb.callback.EarlyStopping(
|
||||
rounds=early_stopping_rounds,
|
||||
metric_name='CustomErr',
|
||||
data_name='Train',
|
||||
abs_tol=tol
|
||||
)
|
||||
booster = xgb.train(
|
||||
{'objective': 'binary:logistic',
|
||||
'eval_metric': ['error', 'rmse'],
|
||||
'tree_method': 'hist'}, D_train,
|
||||
evals=[(D_train, 'Train'), (D_valid, 'Valid')],
|
||||
feval=tm.eval_error_metric,
|
||||
num_boost_round=rounds,
|
||||
callbacks=[early_stop],
|
||||
verbose_eval=False)
|
||||
# 0 based index
|
||||
assert booster.best_iteration == rounds - 1
|
||||
|
||||
def test_early_stopping_skl(self):
|
||||
from sklearn.datasets import load_breast_cancer
|
||||
X, y = load_breast_cancer(return_X_y=True)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user