demo
This commit is contained in:
parent
98e507451c
commit
d05cb13751
42
demo/multi_classification/train.py
Executable file
42
demo/multi_classification/train.py
Executable file
@ -0,0 +1,42 @@
|
||||
|
||||
import sys
|
||||
import numpy as np
|
||||
sys.path.append('../../python/')
|
||||
import xgboost as xgb
|
||||
|
||||
|
||||
|
||||
data = np.loadtxt('./dermatology.data', delimiter=',',converters={33: lambda x:int(x == '?'), 34: lambda x:int(x) } )
|
||||
sz = data.shape
|
||||
|
||||
train = data[:int(sz[0] * 0.7), :]
|
||||
test = data[int(sz[0] * 0.7):, :]
|
||||
|
||||
train_X = train[:,0:33]
|
||||
train_Y = train[:, 34]
|
||||
|
||||
|
||||
test_X = test[:,0:33]
|
||||
test_Y = test[:, 34]
|
||||
|
||||
xg_train = xgb.DMatrix( train_X, label=train_Y)
|
||||
xg_test = xgb.DMatrix(test_X, label=test_Y)
|
||||
# setup parameters for xgboost
|
||||
param = {}
|
||||
# use logistic regression loss, use raw prediction before logistic transformation
|
||||
# since we only need the rank
|
||||
param['objective'] = 'multi:softmax'
|
||||
# scale weight of positive examples
|
||||
param['bst:eta'] = 0.1
|
||||
param['bst:max_depth'] = 6
|
||||
param['eval_metric'] = 'auc'
|
||||
param['silent'] = 1
|
||||
param['nthread'] = 4
|
||||
param['num_class'] = 5
|
||||
|
||||
watchlist = [ (xg_train,'train'), (xg_test, 'test') ]
|
||||
num_round = 5
|
||||
bst = xgb.train(param, xg_train, num_round, watchlist );
|
||||
|
||||
|
||||
|
||||
2
demo/multi_classification/wgetdata.sh
Executable file
2
demo/multi_classification/wgetdata.sh
Executable file
@ -0,0 +1,2 @@
|
||||
#! /bin/bash
|
||||
wget https://archive.ics.uci.edu/ml/machine-learning-databases/dermatology/dermatology.data
|
||||
Loading…
x
Reference in New Issue
Block a user