rename demo of early stopping

This commit is contained in:
hetong007 2015-05-11 16:59:18 -07:00
parent d7da4189dc
commit cfdd6029a8
3 changed files with 41 additions and 2 deletions

View File

@ -6,5 +6,5 @@ generalized_linear_model Generalized Linear Model
cross_validation Cross validation cross_validation Cross validation
create_sparse_matrix Create Sparse Matrix create_sparse_matrix Create Sparse Matrix
predict_leaf_indices Predicting the corresponding leaves predict_leaf_indices Predicting the corresponding leaves
early_Stopping Early Stop in training early_stopping Early Stop in training
poisson_regression Poisson Regression on count data poisson_regression Poisson Regression on count data

View File

@ -0,0 +1,39 @@
require(xgboost)
# load in the agaricus dataset
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label)
# note: for customized objective function, we leave objective as default
# note: what we are getting is margin value in prediction
# you must know what you are doing
param <- list(max.depth=2,eta=1,nthread = 2, silent=1)
watchlist <- list(eval = dtest)
num_round <- 20
# user define objective function, given prediction, return gradient and second order gradient
# this is loglikelihood loss
logregobj <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
preds <- 1/(1 + exp(-preds))
grad <- preds - labels
hess <- preds * (1 - preds)
return(list(grad = grad, hess = hess))
}
# user defined evaluation function, return a pair metric_name, result
# NOTE: when you do customized loss function, the default prediction value is margin
# this may make buildin evalution metric not function properly
# for example, we are doing logistic loss, the prediction is score before logistic transformation
# the buildin evaluation error assumes input is after logistic transformation
# Take this in mind when you use the customization, and maybe you need write customized evaluation function
evalerror <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
err <- as.numeric(sum(labels != (preds > 0)))/length(labels)
return(list(metric = "error", value = err))
}
print ('start training with early Stopping setting')
# training with customized objective, we can also do step by step training
# simply look at xgboost.py's implementation of train
bst <- xgb.train(param, dtrain, num_round, watchlist, logregobj, evalerror, maximize = FALSE,
early.stop.round = 3)
bst <- xgb.cv(param, dtrain, num_round, nfold=5, obj=logregobj, feval = evalerror,
maximize = FALSE, early.stop.round = 3)

View File

@ -7,5 +7,5 @@ demo(generalized_linear_model)
demo(cross_validation) demo(cross_validation)
demo(create_sparse_matrix) demo(create_sparse_matrix)
demo(predict_leaf_indices) demo(predict_leaf_indices)
demo(early_Stopping) demo(early_stopping)
demo(poisson_regression) demo(poisson_regression)