best_ntree_limit attribute added
- best_ntree_limit as new booster atrribute added - usage of bst.best_ntree_limit in python doc added - fixed wrong 'best_iteration' after training continuation
This commit is contained in:
parent
f91ce704f3
commit
ce5930c365
@ -121,7 +121,7 @@ Early stopping requires at least one set in `evals`. If there's more than one, i
|
||||
|
||||
The model will train until the validation score stops improving. Validation error needs to decrease at least every `early_stopping_rounds` to continue training.
|
||||
|
||||
If early stopping occurs, the model will have two additional fields: `bst.best_score` and `bst.best_iteration`. Note that `train()` will return a model from the last iteration, not the best one.
|
||||
If early stopping occurs, the model will have three additional fields: `bst.best_score`, `bst.best_iteration` and `bst.best_ntree_limit`. Note that `train()` will return a model from the last iteration, not the best one.
|
||||
|
||||
This works with both metrics to minimize (RMSE, log loss, etc.) and to maximize (MAP, NDCG, AUC). Note that if you specify more than one evaluation metric the last one in `param['eval_metric']` is used for early stopping.
|
||||
|
||||
@ -135,9 +135,9 @@ dtest = xgb.DMatrix(data)
|
||||
ypred = bst.predict(xgmat)
|
||||
```
|
||||
|
||||
If early stopping is enabled during training, you can predict with the best iteration.
|
||||
If early stopping is enabled during training, you can get predicticions from the best iteration with `bst.best_ntree_limit`:
|
||||
```python
|
||||
ypred = bst.predict(xgmat,ntree_limit=bst.best_iteration)
|
||||
ypred = bst.predict(xgmat,ntree_limit=bst.best_ntree_limit)
|
||||
```
|
||||
|
||||
Plotting
|
||||
|
||||
@ -38,8 +38,8 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None,
|
||||
Requires at least one item in evals.
|
||||
If there's more than one, will use the last.
|
||||
Returns the model from the last iteration (not the best one).
|
||||
If early stopping occurs, the model will have two additional fields:
|
||||
bst.best_score and bst.best_iteration.
|
||||
If early stopping occurs, the model will have three additional fields:
|
||||
bst.best_score, bst.best_iteration and bst.best_ntree_limit.
|
||||
evals_result: dict
|
||||
This dictionary stores the evaluation results of all the items in watchlist.
|
||||
Example: with a watchlist containing [(dtest,'eval'), (dtrain,'train')] and
|
||||
@ -75,15 +75,24 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None,
|
||||
params += [('eval_metric', eval_metric)]
|
||||
|
||||
bst = Booster(params, [dtrain] + [d[0] for d in evals])
|
||||
ntrees = 0
|
||||
nboost = 0
|
||||
num_parallel_tree = 1
|
||||
|
||||
if xgb_model is not None:
|
||||
if not isinstance(xgb_model, STRING_TYPES):
|
||||
xgb_model = xgb_model.save_raw()
|
||||
bst = Booster(params, [dtrain] + [d[0] for d in evals], model_file=xgb_model)
|
||||
ntrees = len(bst.get_dump())
|
||||
nboost = len(bst.get_dump())
|
||||
else:
|
||||
bst = Booster(params, [dtrain] + [d[0] for d in evals])
|
||||
|
||||
_params = dict(params) if isinstance(params, list) else params
|
||||
if 'num_parallel_tree' in _params:
|
||||
num_parallel_tree = _params['num_parallel_tree']
|
||||
nboost //= num_parallel_tree
|
||||
if 'num_class' in _params:
|
||||
nboost //= _params['num_class']
|
||||
|
||||
if evals_result is not None:
|
||||
if not isinstance(evals_result, dict):
|
||||
raise TypeError('evals_result has to be a dictionary')
|
||||
@ -95,7 +104,7 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None,
|
||||
if not early_stopping_rounds:
|
||||
for i in range(num_boost_round):
|
||||
bst.update(dtrain, i, obj)
|
||||
ntrees += 1
|
||||
nboost += 1
|
||||
if len(evals) != 0:
|
||||
bst_eval_set = bst.eval_set(evals, i, feval)
|
||||
if isinstance(bst_eval_set, STRING_TYPES):
|
||||
@ -118,7 +127,8 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None,
|
||||
evals_result[key][res_key].append(res_val)
|
||||
else:
|
||||
evals_result[key][res_key] = [res_val]
|
||||
bst.best_iteration = (ntrees - 1)
|
||||
bst.best_iteration = (nboost - 1)
|
||||
bst.best_ntree_limit = nboost * num_parallel_tree
|
||||
return bst
|
||||
|
||||
else:
|
||||
@ -154,7 +164,7 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None,
|
||||
best_score = float('inf')
|
||||
|
||||
best_msg = ''
|
||||
best_score_i = ntrees
|
||||
best_score_i = (nboost - 1)
|
||||
|
||||
if isinstance(learning_rates, list) and len(learning_rates) != num_boost_round:
|
||||
raise ValueError("Length of list 'learning_rates' has to equal 'num_boost_round'.")
|
||||
@ -166,7 +176,7 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None,
|
||||
else:
|
||||
bst.set_param({'eta': learning_rates(i, num_boost_round)})
|
||||
bst.update(dtrain, i, obj)
|
||||
ntrees += 1
|
||||
nboost += 1
|
||||
bst_eval_set = bst.eval_set(evals, i, feval)
|
||||
|
||||
if isinstance(bst_eval_set, STRING_TYPES):
|
||||
@ -195,7 +205,7 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None,
|
||||
if (maximize_score and score > best_score) or \
|
||||
(not maximize_score and score < best_score):
|
||||
best_score = score
|
||||
best_score_i = (ntrees - 1)
|
||||
best_score_i = (nboost - 1)
|
||||
best_msg = msg
|
||||
elif i - best_score_i >= early_stopping_rounds:
|
||||
sys.stderr.write("Stopping. Best iteration:\n{}\n\n".format(best_msg))
|
||||
@ -204,6 +214,7 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None,
|
||||
break
|
||||
bst.best_score = best_score
|
||||
bst.best_iteration = best_score_i
|
||||
bst.best_ntree_limit = (bst.best_iteration + 1) * num_parallel_tree
|
||||
return bst
|
||||
|
||||
|
||||
|
||||
@ -8,30 +8,37 @@ import unittest
|
||||
|
||||
rng = np.random.RandomState(1337)
|
||||
|
||||
class TestTrainingContinuation(unittest.TestCase):
|
||||
|
||||
xgb_params = {
|
||||
'colsample_bytree': 0.7,
|
||||
class TestTrainingContinuation(unittest.TestCase):
|
||||
num_parallel_tree = 3
|
||||
|
||||
xgb_params_01 = {
|
||||
'silent': 1,
|
||||
'nthread': 1,
|
||||
}
|
||||
|
||||
xgb_params_02 = {
|
||||
'silent': 1,
|
||||
'nthread': 1,
|
||||
'num_parallel_tree': num_parallel_tree
|
||||
}
|
||||
|
||||
def test_training_continuation(self):
|
||||
digits = load_digits(2)
|
||||
X = digits['data']
|
||||
y = digits['target']
|
||||
|
||||
dtrain = xgb.DMatrix(X,label=y)
|
||||
dtrain = xgb.DMatrix(X, label=y)
|
||||
|
||||
gbdt_01 = xgb.train(self.xgb_params, dtrain, num_boost_round=10)
|
||||
gbdt_01 = xgb.train(self.xgb_params_01, dtrain, num_boost_round=10)
|
||||
ntrees_01 = len(gbdt_01.get_dump())
|
||||
assert ntrees_01 == 10
|
||||
|
||||
gbdt_02 = xgb.train(self.xgb_params, dtrain, num_boost_round=0)
|
||||
gbdt_02 = xgb.train(self.xgb_params_01, dtrain, num_boost_round=0)
|
||||
gbdt_02.save_model('xgb_tc.model')
|
||||
|
||||
gbdt_02a = xgb.train(self.xgb_params, dtrain, num_boost_round=10, xgb_model=gbdt_02)
|
||||
gbdt_02b = xgb.train(self.xgb_params, dtrain, num_boost_round=10, xgb_model="xgb_tc.model")
|
||||
gbdt_02a = xgb.train(self.xgb_params_01, dtrain, num_boost_round=10, xgb_model=gbdt_02)
|
||||
gbdt_02b = xgb.train(self.xgb_params_01, dtrain, num_boost_round=10, xgb_model="xgb_tc.model")
|
||||
ntrees_02a = len(gbdt_02a.get_dump())
|
||||
ntrees_02b = len(gbdt_02b.get_dump())
|
||||
assert ntrees_02a == 10
|
||||
@ -39,14 +46,23 @@ class TestTrainingContinuation(unittest.TestCase):
|
||||
assert mean_squared_error(y, gbdt_01.predict(dtrain)) == mean_squared_error(y, gbdt_02a.predict(dtrain))
|
||||
assert mean_squared_error(y, gbdt_01.predict(dtrain)) == mean_squared_error(y, gbdt_02b.predict(dtrain))
|
||||
|
||||
gbdt_03 = xgb.train(self.xgb_params, dtrain, num_boost_round=3)
|
||||
gbdt_03 = xgb.train(self.xgb_params_01, dtrain, num_boost_round=3)
|
||||
gbdt_03.save_model('xgb_tc.model')
|
||||
|
||||
gbdt_03a = xgb.train(self.xgb_params, dtrain, num_boost_round=7, xgb_model=gbdt_03)
|
||||
gbdt_03b = xgb.train(self.xgb_params, dtrain, num_boost_round=7, xgb_model="xgb_tc.model")
|
||||
gbdt_03a = xgb.train(self.xgb_params_01, dtrain, num_boost_round=7, xgb_model=gbdt_03)
|
||||
gbdt_03b = xgb.train(self.xgb_params_01, dtrain, num_boost_round=7, xgb_model="xgb_tc.model")
|
||||
ntrees_03a = len(gbdt_03a.get_dump())
|
||||
ntrees_03b = len(gbdt_03b.get_dump())
|
||||
assert ntrees_03a == 10
|
||||
assert ntrees_03b == 10
|
||||
assert mean_squared_error(y, gbdt_03a.predict(dtrain)) == mean_squared_error(y, gbdt_03b.predict(dtrain))
|
||||
|
||||
|
||||
gbdt_04 = xgb.train(self.xgb_params_02, dtrain, num_boost_round=3)
|
||||
assert gbdt_04.best_ntree_limit == (gbdt_04.best_iteration + 1) * self.num_parallel_tree
|
||||
assert mean_squared_error(y, gbdt_04.predict(dtrain)) == \
|
||||
mean_squared_error(y, gbdt_04.predict(dtrain, ntree_limit=gbdt_04.best_ntree_limit))
|
||||
|
||||
gbdt_04 = xgb.train(self.xgb_params_02, dtrain, num_boost_round=7, xgb_model=gbdt_04)
|
||||
assert gbdt_04.best_ntree_limit == (gbdt_04.best_iteration + 1) * self.num_parallel_tree
|
||||
assert mean_squared_error(y, gbdt_04.predict(dtrain)) == \
|
||||
mean_squared_error(y, gbdt_04.predict(dtrain, ntree_limit=gbdt_04.best_ntree_limit))
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user