[backport] Fix gamma neg log likelihood. (#7275) (#7285)

This commit is contained in:
Jiaming Yuan 2021-10-05 23:01:11 +08:00 committed by GitHub
parent 508a0b0dbd
commit cdbfd21d31
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 32 additions and 4 deletions

View File

@ -309,10 +309,9 @@ struct EvalGammaNLogLik {
float constexpr kPsi = 1.0;
bst_float theta = -1. / py;
bst_float a = kPsi;
// b = -std::log(-theta);
float b = 1.0f;
// c = 1. / kPsi * std::log(y/kPsi) - std::log(y) - common::LogGamma(1. / kPsi);
// = 1.0f * std::log(y) - std::log(y) - 0 = 0
float b = -std::log(-theta);
// c = 1. / kPsi^2 * std::log(y/kPsi) - std::log(y) - common::LogGamma(1. / kPsi);
// = 1.0f * std::log(y) - std::log(y) - 0 = 0
float c = 0;
// general form for exponential family.
return -((y * theta - b) / a + c);

View File

@ -124,6 +124,35 @@ class TestEvalMetrics:
skl_gamma_dev = mean_gamma_deviance(y, score)
np.testing.assert_allclose(gamma_dev, skl_gamma_dev, rtol=1e-6)
@pytest.mark.skipif(**tm.no_sklearn())
def test_gamma_lik(self) -> None:
import scipy.stats as stats
rng = np.random.default_rng(1994)
n_samples = 32
n_features = 10
X = rng.normal(0, 1, size=n_samples * n_features).reshape((n_samples, n_features))
alpha, loc, beta = 5.0, 11.1, 22
y = stats.gamma.rvs(alpha, loc=loc, scale=beta, size=n_samples, random_state=rng)
reg = xgb.XGBRegressor(tree_method="hist", objective="reg:gamma", n_estimators=64)
reg.fit(X, y, eval_metric="gamma-nloglik", eval_set=[(X, y)])
score = reg.predict(X)
booster = reg.get_booster()
nloglik = float(booster.eval(xgb.DMatrix(X, y)).split(":")[1].split(":")[0])
# \beta_i = - (1 / \theta_i a)
# where \theta_i is the canonical parameter
# XGBoost uses the canonical link function of gamma in evaluation function.
# so \theta = - (1.0 / y)
# dispersion is hardcoded as 1.0, so shape (a in scipy parameter) is also 1.0
beta = - (1.0 / (- (1.0 / y))) # == y
nloglik_stats = -stats.gamma.logpdf(score, a=1.0, scale=beta)
np.testing.assert_allclose(nloglik, np.mean(nloglik_stats), rtol=1e-3)
def run_roc_auc_binary(self, tree_method, n_samples):
import numpy as np
from sklearn.datasets import make_classification