Merge branch 'master' of ssh://github.com/tqchen/xgboost
This commit is contained in:
commit
c957e1a648
@ -14,6 +14,8 @@ Notes on the Code: [Code Guide](src)
|
|||||||
|
|
||||||
What's New
|
What's New
|
||||||
=====
|
=====
|
||||||
|
|
||||||
|
* Thanks to Bing Xu, [XGBoost.jl](https://github.com/antinucleon/XGBoost.jl) allows you to use xgboost from Julia
|
||||||
* See the updated [demo folder](demo) for feature walkthrough
|
* See the updated [demo folder](demo) for feature walkthrough
|
||||||
* Thanks to Tong He, the new [R package](R-package) is available
|
* Thanks to Tong He, the new [R package](R-package) is available
|
||||||
|
|
||||||
@ -26,7 +28,6 @@ Features
|
|||||||
* Speed: XGBoost is very fast
|
* Speed: XGBoost is very fast
|
||||||
- IN [demo/higgs/speedtest.py](demo/kaggle-higgs/speedtest.py), kaggle higgs data it is faster(on our machine 20 times faster using 4 threads) than sklearn.ensemble.GradientBoostingClassifier
|
- IN [demo/higgs/speedtest.py](demo/kaggle-higgs/speedtest.py), kaggle higgs data it is faster(on our machine 20 times faster using 4 threads) than sklearn.ensemble.GradientBoostingClassifier
|
||||||
* Layout of gradient boosting algorithm to support user defined objective
|
* Layout of gradient boosting algorithm to support user defined objective
|
||||||
* Python interface, works with numpy and scipy.sparse matrix
|
|
||||||
|
|
||||||
Build
|
Build
|
||||||
=====
|
=====
|
||||||
|
|||||||
@ -8,12 +8,30 @@ This folder contains the all example codes using xgboost.
|
|||||||
Features Walkthrough
|
Features Walkthrough
|
||||||
====
|
====
|
||||||
This is a list of short codes introducing different functionalities of xgboost and its wrapper.
|
This is a list of short codes introducing different functionalities of xgboost and its wrapper.
|
||||||
* Basic walkthrough of wrappers [python](guide-python/basic_walkthrough.py)
|
* Basic walkthrough of wrappers
|
||||||
* Cutomize loss function, and evaluation metric [python](guide-python/custom_objective.py)
|
[python](guide-python/basic_walkthrough.py)
|
||||||
* Boosting from existing prediction [python](guide-python/boost_from_prediction.py)
|
[R](../R-package/demo/basic_walkthrough.R)
|
||||||
* Predicting using first n trees [python](guide-python/predict_first_ntree.py)
|
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/basic_walkthrough.jl)
|
||||||
* Generalized Linear Model [python](guide-python/generalized_linear_model.py)
|
* Cutomize loss function, and evaluation metric
|
||||||
* Cross validation [python](guide-python/cross_validation.py)
|
[python](guide-python/custom_objective.py)
|
||||||
|
[R](../R-package/demo/custom_objective.R)
|
||||||
|
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/custom_objective.jl)
|
||||||
|
* Boosting from existing prediction
|
||||||
|
[python](guide-python/boost_from_prediction.py)
|
||||||
|
[R](../R-package/demo/boost_from_prediction.R)
|
||||||
|
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/boost_from_prediction.jl)
|
||||||
|
* Predicting using first n trees
|
||||||
|
[python](guide-python/predict_first_ntree.py)
|
||||||
|
[R](../R-package/demo/boost_from_prediction.R)
|
||||||
|
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/boost_from_prediction.jl)
|
||||||
|
* Generalized Linear Model
|
||||||
|
[python](guide-python/generalized_linear_model.py)
|
||||||
|
[R](../R-package/demo/generalized_linear_model.R)
|
||||||
|
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/generalized_linear_model.jl)
|
||||||
|
* Cross validation
|
||||||
|
[python](guide-python/cross_validation.py)
|
||||||
|
[R](../R-package/demo/cross_validation.R)
|
||||||
|
[Julia](https://github.com/antinucleon/XGBoost.jl/blob/master/demo/cross_validation.jl)
|
||||||
|
|
||||||
Basic Examples by Tasks
|
Basic Examples by Tasks
|
||||||
====
|
====
|
||||||
|
|||||||
@ -1,3 +1,9 @@
|
|||||||
|
Highlights
|
||||||
|
=====
|
||||||
|
Higgs challenge ends recently, xgboost is being used by many users. This list highlights the xgboost solutions of players
|
||||||
|
* Blogpost by phunther: [Winning solution of Kaggle Higgs competition: what a single model can do](http://no2147483647.wordpress.com/2014/09/17/winning-solution-of-kaggle-higgs-competition-what-a-single-model-can-do/)
|
||||||
|
|
||||||
|
|
||||||
Guide for Kaggle Higgs Challenge
|
Guide for Kaggle Higgs Challenge
|
||||||
=====
|
=====
|
||||||
|
|
||||||
|
|||||||
@ -10,3 +10,7 @@ Python
|
|||||||
R
|
R
|
||||||
=====
|
=====
|
||||||
* See [R-package](../R-package)
|
* See [R-package](../R-package)
|
||||||
|
|
||||||
|
Julia
|
||||||
|
=====
|
||||||
|
* See [XGBoost.jl](https://github.com/antinucleon/XGBoost.jl)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user